Unfortunately, the U.S. Fish and Wildlife Service Internship in Klamath Falls, Oregon is nearing the end of its term.

The Conservation and Land Management internship with the US Fish and Wildlife Service – Klamath Falls Field Office continues to keep us interns busy by providing us with numerous opportunities to go out and do various types of fieldwork. We have also had a few office days this past month or so, in which office work usually consists of doing research via searching for/reading articles and writing annotated bibliographies to help our supervisor, the fisheries biologist, with his task of writing biological opinions. On days that we aren’t working on projects out in the field or days when we are not assigned research to do for office work, we usually find stuff to do to keep us busy for the day. This usually involves updating our resumes, looking up jobs, or working on writing another blog post for the internship. This past month or so, the projects that we have gotten to help with consisted of duck banding at Summer Lake, more electrofishing within Long Creek in Bull Trout critical habitat to remove Brook Trout, and telemetry.

A view of the Sprague River in Klamath Falls, Oregon

The task of duck banding at Summer Lake was unique, action-packed, and exhausting. The project was led by the Klamath Basin National Wildlife Refuge Complex staff, while the other intern and I, along with some staff from the Oregon Department of Fish and Wildlife, assisted in banding the ducks.

Duck Banding Station

The duck banding project, which took place at night over the course of a few days, involved driving airboats around within the wetlands throughout the refuge. The process consisted of the airboat conductor driving by flocks of ducks and spotlighting them while they were sitting on top of the water. Once close enough to the ducks, the other individuals in the boat utilized nets to capture the ducks and then put them in large holding crates on the airboat. At times, it was tough capturing the ducks, as most can fly, in which some ducks would simply fly away before we had the chance to get to them. Also, we had a few that flew out of our nets before we had the chance to handle them and put them in the crates. The airboat was also utilized to chase down ducks that were trying to move away from the boat by swimming/running on top of the water. If this was the case, the netters would have to try and net the ducks while the boat was in acceleration. This was quite difficult, making it tough to net birds on the move, as we had to act quickly and try and net the duck within a split second, or else we would miss the duck as the boat passed by, causing us to have to turn the boat around to try and catch the duck that was missed. Each time the boat had filled 4 crates worth of ducks, the boat returned to shore where the banding station was set up. After the crates were unloaded, the ducks in each crate were organized by species, age (i.e., local, hatch-year, mature), and sex to make the banding process and data collection more efficient and quicker. Keeping the ducks at the banding station organized ensured that the ducks offloaded from one boat had been banded and processed before the next boat arrived with more crates of ducks.

Crates filled with ducks.

After the ducks were processed and had received a leg band, they were released unharmed back into the wetlands. The species of ducks that were banded included Gadwall, Mallard, Pintail, Bufflehead, and Green-winged Teal.

A Green-winged Teal that had received a leg band.
A Bufflehead that had received a leg band.

To cap off the last night of duck banding, I was offered the opportunity to gain experience driving the airboat, in which I got to drive it around the wetland a bit and then load the boat onto the trailer. Operating the airboat was fairly simple, as there is just an accelerator and a steering lever utilized to maneuver the boat.

My first time driving an airboat was a success.

After 3 days-worth of banding a total of roughly 2,000 ducks, in addition to staying in refuge housing for the duration of the banding project, I was exhausted and ready to come home, although, I really enjoyed having the opportunity in gaining duck banding experience. 

The morning sunrise after a night of duck banding.

The task of removing Brook Trout in Bull Trout critical habitat via electrofishing within Long Creek was one of the more exciting projects we have gotten to do during the internship so far. The purpose of removing Brook Trout from the creek was due to Brook Trout being an introduced fish species in Oregon, which their population has increased dramatically in many watersheds throughout Oregon since their introduction, causing native species of fish, including Bull Trout, to become displaced from their native ranges. The process consisted of electrofishing while moving throughout the stream, trying to catch and remove as much Brook Trout as possible. There was never a dull moment of electrofishing as we walked through the stream, as there were a ton of Brook Trout inhabiting the area of the stream we sampled. Over the course of 2 days of electrofishing, we had caught and effectively removed a total of 560 Brook Trout from Long Creek.

1st sample of Brook Trout that had been effectively removed from Bull Trout critical habitat.
2nd sample of Brook Trout that had been effectively removed from Bull Trout critical habitat.

Mostly all the fish that were caught had been fairly small, although we caught a few larger fish that were inhabiting parts of the stream, in which the largest Brook Trout we had caught measured 9.75 inches in length.

Measuring the length of the largest Brook Trout caught.

The larger Brook Trout that were caught were kept with us in a fishing pouch as we worked our way through the stream. At the end of the day, we used a PIT Tag reader on the larger fish to see if any had possessed a PIT tag, but none had contained a tag. In addition to catching Brook Trout, we had also caught a few Rainbow Trout while electrofishing which we had released back into the stream unharmed.

One of the most recent projects that the USFWS Klamath Falls Field Office offered us interns consisted of obtaining telemetry experience. The process consisted of going out and using telemetry equipment to try and estimate the general location of a mammal radio collar that had been randomly placed within public forest land by one of the wildlife biologists.

Cattle pastures within the areas where we surveyed with the telemetry equipment.

The components of our telemetry setup consisted of a radio receiver that received signals from the radio collar, along with 2 antennas, 1 that was affixed to the top of our vehicle to monitor the radio signal of the collar while we were driving around on backroads throughout the forest, in addition to a handheld antenna that was used for surveying in spots where the car antenna had picked up a signal from the radio collar.

Utilizing a handheld antenna to track the radio collar.
A telemetry antenna affixed to the top of the vehicle.

The use of the handheld antenna was beneficial as it allowed us to get a sense of the general direction of the radio collar. We surveyed areas within public forest land in search of the collar while conducting the triangulation method with the telemetry equipment. The triangulation method consisted of going to multiple locations and using the telemetry equipment to determine the direction in which the strongest signal is received from the radio collar. When we found an initial spot to survey, we ensured that the gain was set to a high value to increase the sensitivity of the receiver. At a high gain, we were able to detect a signal from the radio collar and get a general sense of the location of the collar from the initial survey spot by doing a complete 360-degree circle with the telemetry antenna and listening to the signal strength on the receiver. Once an initial signal was received and the signal direction was documented of the estimated location of the collar, we decreased the gain setting on the receiver, making the receiver less sensitive to the radio collar signal. We lowered the gain until we could barely hear the beeping sound of the signal in the direction of the estimated location of the collar. After having found a gain setting to start tracking while at our initial survey spot, we drove around and listened for a signal detection via the car antenna.

A signal is detected from the radio collar by the car antenna as illustrated on the radio receiver.

For a given area where a signal was detected by the car antenna, we got out of the vehicle and surveyed the area using the handheld antenna, and estimated the general direction where we heard the strongest signal from the collar. At each spot surveyed, while the gain on the receiver was kept the same, we determined if the beeping sound (i.e., radio signal) was getting louder or quieter than the initial survey spot. A stronger signal from the radio collar that was picked up by the receiver (i.e., meaning the collar was in proximity), was illustrated by a louder, more definitive beeping sound on the receiver. Alternatively, if we were receiving a weaker signal from the collar, illustrated by a softer beeping sound on the receiver, it meant we were farther away from the collar. In areas where we noticed the signal strength was increasing and the receiver was illustrating relatively high values of signal strength, meaning we were getting closer to the collar, we had to decrease the gain setting (i.e., sensitivity) on the receiver. If the gain setting were to be left at a higher value while the signal became stronger once in proximity of the collar, it would make it difficult to discern the directionality of the signal due to the higher sensitivity causing the signal to become static, making it harder to hear the beeping sounds on the receiver. Some aspects of telemetry that made tracking tough and stressful at times involved the presence of topography within the study area. Hillsides, peaks, valleys, trees, etc. can potentially disrupt the radio signal, causing confusion about the directionality of the signal from the collar. For example, at times, there was the potential of “signal bounce” occurring when we were surveying and pointing the handheld telemetry antenna in the direction of a hillside/mountain.

A mountain that caused the signal to bounce at times when surveying from the valley.

The term “signal bounce” means that there is a possibility of receiving a signal in the complete opposite direction of the radio collar due to hillsides/mountains in the area influencing the radio signal. Additionally, vegetation, such as trees, can disrupt the radio signal as well. In areas with densely populated stands of trees, we may not hear any signal, whereas if we walk 50 feet down the road away from the trees, we may pick up a signal of the collar. Because of the aspect of “signal bounce”, as well as vegetative growth in the area, we had to always consider our positioning/location in relation to landmarks and vegetation when we were tracking the radio collar to determine the most accurate directionality of the radio signal. Throughout the tracking process, we used an app called onX that allowed us to set waypoints on a digital map at locations we surveyed and had received a signal from the collar.

A few waypoints are plotted on the onX map of the areas that had been surveyed.

Plotting more than a few waypoints on the onX map helped us better determine the general area where the radio collar might be due to us being able to keep track of each spot we surveyed where we heard a signal from the radio collar. If we weren’t utilizing the digital onX map and did the triangulation method on paper while using a modern map to keep track of the areas where we had heard a signal, after figuring out where the surveyed locations (i.e., points) intersect with each other on paper based off the signal direction of each, the area within the intersection of the surveyed points on a modern map would signify the estimated location of the collar. Before the telemetry project, I had not had extensive experience working with telemetry, other than participating in a telemetry workshop while attending college, in which the workshop leads taught the participants how to properly use the equipment. By being able to work with the telemetry equipment these past couple of days while trying to get an estimated location of a mammal radio collar, I have learned quite a bit more about telemetry.

In conclusion, the past 4 months of the U.S. Fish and Wildlife Service internship in Klamath Falls, Oregon have been nothing short of fascinating, as the various projects we have gotten to assist with have kept the job interesting and exciting. In addition, it is awesome that there are quite a few recreational opportunities within an hour’s drive of town, such as fishing, hiking, and surfing/boogie boarding. This past month, I have finally ventured out to the Oregon coast and did some boogie boarding and surfing, in addition to finding a few fishing spots along the way.

Fishing the Middle Fork Willamette River
Middle Fork Willamette River
Middle Fork Willamette River
The first Trout that I have caught since arriving in Oregon while fishing the Middle Fork Willamette River.
Agate Beach along the Oregon coast.

It was really exciting getting the opportunity to try surfing for the first time via taking surfing lessons with a local surf shop. One of the things that I have wanted to try for quite some time that I haven’t been able to do coming from the desert of New Mexico was surfing, in which I had a blast learning how to surf. The past few weekends, I have made it back to the coast to do more surfing, and it has been a lot of fun trying out different boards that vary in length to experience how each board reacts when riding a wave.

First time surfing

Overall, I have really enjoyed my time in Oregon, and I have recently applied to other fisheries jobs that are along the Oregon coast in order to have additional time to surf, as well as have more opportunities to explore the numerous hiking trails, lakes, and rivers that Oregon has to offer.  

Agate Beach
Otter Rock / Devils Punchbowl State Natural Area

Endless Adventures working with the U.S. Fish and Wildlife Service in Klamath Falls, Oregon

The Conservation and Land Management internship with the U.S. Fish and Wildlife Service continues to offer great field experience gathering skills and abilities essential in working in the wildlife ecology and management field. As the fire season starts to kick off here in the basin, the field projects are somewhat dwindling, although the department has not completely moved to a full-time office work schedule quite yet. On the days that smoke decides to roll into the basin and influences the air quality, I have become much more appreciative of the days that we get to spend out in the field, as the number of field days currently seems to be numbered with response to the incoming fire season. This past month or so, the projects we have gotten the chance to do include electrofishing in Bull Trout (Salvelinus confluentus) critical habitat, Yellow Rail (Coturnicops noveboracensis) surveys/banding, Modoc sucker (Catostomus microps) surveys, the attempt to track hatchery tagged fish in Upper Klamath Lake through radio and acoustic telemetry methods via boat, and volunteering to help clean up parts of the Williamson River.

Klamath Falls, Oregon
Sawmill Hiking Trail

The task of electrofishing in Bull Trout critical habitat is essential to determine the abundance of Bull Trout in the area. Bull Trout are currently listed as a threatened species, meaning the population of the species is dwindling, resulting in the species having a high possibility of becoming endangered in the future throughout all or in a considerable portion of its home range. At the first site that we had electro-fished, along Dixon Creek, no Bull Trout were caught, although 20 Brook Trout (Salvelinus fontinalis) were recorded.

Brook Trout (Salvelinus fontinalis)

The second site that was electro-fished farther upstream along Dixon Creek consisted of removing any Brown Trout (Salmo trutta) from the creek. Over the course of two days of electro-fishing at the second site, numerous Brown Trout of various sizes were removed from the creek, in addition to one small Bull Trout being caught, which was released immediately back into the creek.

Bull Trout (Salvelinus confluentus)
Brown Trout (Salmo trutta)

The purpose of removing Brown Trout that inhabit Bull Trout critical habitat is due to Brown Trout being an invasive species. The term “invasive species” refers to a species that is not native to the area it inhabits. The threats of invasive species include competing with native species for resources such as food, water, and habitat, preying on native species, and carrying diseases and parasites that have the chance to spread to native species populations. These threats reduce biodiversity within an ecosystem, ultimately threatening native species populations, making it critical to remove any Brown Trout in areas that are considered Bull Trout critical habitat.   

A project we participated in working alongside the Sucker Science Coordinator within the Klamath Falls Fish and Wildlife Office involved doing mussel surveys within sections of the Sprague River.

Sprague River

The western ridged mussel (Gonidea angulata) is a type of freshwater mussel that has seen the range of its distribution decrease, although the species is known to still inhabit California, Oregon, Washington, Idaho, Nevada, and British Colombia.

Western Ridged Mussel (Gonidea angulata)

In 2020, the species had been petitioned to be listed as an endangered species. The purpose of the survey was to look for western ridged mussels within sections of the Sprague River using a magnifying glass-like tool that allowed us to see the riverbed while looking from the surface of the water. The areas that were surveyed were once known as sites that contained western ridged mussels years prior. Individuals walked upstream and downstream from a site location to try and locate western ridged mussels in the area using the magnifying glass-like tool surveying different areas of the riverbed.

Magnifying glass-like Tool

If western ridged mussels were found, the GPS coordinates of the site where a mussel was found were recorded. Additionally, the number of western ridged mussels found per site was recorded as well. Other species of mussels that were found within areas surveyed included Floaters (Genus Anodonta or Sinanodonta) and Western Pearlshell (Margaritifera falcata).

With it being my first experience doing mussel surveys, it definitely took a little bit of practice learning how to differentiate the mussels from one another while using the mussel identification field guide that was provided. It also helped that the Sucker Science Coordinator had us do a practice run of trying to identify mussels at a site prior to doing the surveys and data collection.

One of the projects the other intern and I got to assist with alongside a graduate student and refuge staff at the Klamath Marsh/Upper Klamath National Wildlife Refuge consisted of doing Yellow Rail surveys, in which the surveys took place at night when the birds were active.

Yellow Rail (Coturnicops noveboracensis)

The process consisted of going out in the marsh and playing an acoustic call of a Yellow Rail via a JBL speaker in different areas throughout the marsh to try and get a response from Yellow Rails within proximity of the acoustic call. Receiving a response from Yellow Rails in the area allowed us to pinpoint the general location of the rails. The response call of the rails was a distinctive song, in which the sound was like what tapping two stones together would sound like (i.e., “tick-tick, tick-tick-tick”), in which most of the time, they alternate between sets of two and three notes. If we received a response from a rail nearby, we pinpointed the general direction of the rail call and walked towards the sound of the call until we had estimated that the bird was a couple meters away. Once we got as close to the bird as possible without being right next to it, we stopped and downed some of the dense grass around us to try and call in the bird to capture it with a net. The purpose of getting as close as possible to the bird and then trying to call it in is due to them being an extremely secretive, tiny, chickenlike marsh bird, which poses a risk of them being easily stepped on or walked over unknowingly.

Yellow Rail Nest

If the bird feels pressured, there is also a potential of flushing the bird and it flying away before getting the chance to net it. We had a few close encounters with some rails, they seemed very close to where we were set up, although we couldn’t call any into our setup to get the chance of netting them. If we had been lucky enough to call in some birds and capture them with a net, some measurements that would’ve been gathered while using a dial caliper include measuring the tarsus length, beak length, wing length from carpal joint to wingtip, and secondary length from carpal joint to the tip of the outermost secondary feather. Overall, I appreciated the opportunity that the refuge staff provided the other intern and I to help out with the rail surveys, it was exciting getting to hear quite a few rails calling throughout the marsh while the surveys were being conducted.

The project that was the most enjoyable that we had the chance to do this past month involved conducting Modoc sucker surveys in Lakeview, Oregon.

Modoc Sucker (Catostomus microps)

It was a 2-week project that consisted of finding pools to survey and recording UTM coordinates for each site during the first week and then camping the following week in order to conduct night surveys looking for Modoc suckers at each site of interest. Modoc suckers were listed as an endangered species in 1985 and were recently removed from the Federal List of Endangered and Threatened Wildlife in 2016 due to populations recovering with the help of the protection provided by the Endangered Species Act while the species was listed as endangered. The surveys we conducted were critical in monitoring the status of the species to ensure the population is staying relatively stable. Roughly 40+ pools were surveyed in wilderness streams, in which flashlights and laser pointers were used to locate the suckers and to try and count the ones found to record into our datasheet.

One of the pools surveyed for Modoc Suckers

For each sucker that was found, the size of each was estimated (in mm) and recorded into the corresponding size/age group. With Speckled Dace (Rhinichthys osculus) inhabiting the same pools surveyed as the Modoc suckers and looking somewhat similar to Modoc suckers as well, a distinctive characteristic that helped differentiate the Modoc suckers from Speckled Dace was the presence of dark bands on the backside of the suckers. The bands on the larger suckers were much more distinct, making it easier to I.D. the larger suckers.

Visible bands present on Modoc Sucker

Other organisms that were seen during the surveys consisted of Speckled Dace, tree frogs, Redband Trout (Oncorhynchus mykiss gairdneri), garter snakes, Water Scorpions (Nepidae), and a couple dragonflies emerging from their nymph stage.

A pool of Speckled Dace (Rhinichthys osculus)
Tree Frog
Water Scorpion (Nepidae)
Dragonfly emerging from its nymph stage
Dragonfly emerging from its nymph stage

Overall, although some nights were very tiring due to the surveys being conducted from 7 pm – 3 am, being able to camp for a couple days and look for fish at night while stars filled the sky was very enjoyable. It was also very exciting getting the chance to see many different organisms that inhabit the same aquatic ecosystem as the suckers as well.

The other intern and I alongside the Fisheries Biologist

The last two projects the other intern and I have gotten the chance to participate in involved attempting to track tagged fish in Upper Klamath Lake through radio and acoustic telemetry methods via boat and volunteering to help with the Williamson River cleanup. The project on Upper Klamath Lake did not go as planned, as the telemetry equipment/PIT tag equipment malfunctioned in which we did not get the chance to track tagged fish. But the day was not wasted as we got to go around the lake a bit on the boat while seeing tons of suckers swimming in groups near the boat.

Upper Klamath Lake

With regards to the Williamson River cleanup, it is a volunteer event that occurs once a year and involves picking up trash, mostly along the banks of the river, via boat. While there was minimal trash to be picked up, it was great in helping ensure that there will be fewer hazards in the water that fish may encounter that could potentially cause them harm.

Williamson River

Over the past two and a half months working with the U.S. Fish and Wildlife Service, the various projects have kept the job interesting. Every day is another adventure gaining new skills and getting the chance to see different parts of southern Oregon. I am excited to see what the next couple of months have in store for us interns before our term ends, and I can’t wait to get back out into the field to conduct more field research.

First Month Working with the US Fish and Wildlife Service in Klamath Falls, Oregon

The Conservation and Land Management internship has been beneficial in gaining experience working with various aspects of fisheries and wildlife conservation and management in conjunction with the Klamath Falls Fish and Wildlife Office. The opportunity to work alongside biologists and hatchery staff has led to gaining knowledge and experience working with species that are important to the local ecosystems in the area, whether it be Bull Trout, Brook Trout, Lost River sucker, shortnose sucker, and Canada Geese.


The first project consisted of using an electrofishing backpack to shock an area of Deming Creek Trail for Bull Trout. The purpose of electrofishing is to collect data regarding the abundance, species composition, health, and density of a fish population in any given area. The task involved using a backpacking unit in the stream to shock fish, catch the shocked fish in nets, and estimate the size lengths of each individual caught. With it being my first experience trying to net fish after they had been electroshocked by the backpack shocker, developing a quick reaction time to net the stunned fish was a must. As the day went on, we had better success rates in netting fish, which led to more accurate data for the study area.

Rosy Boa
Deming Creek


The second occasion of backpack electroshocking consisted of shocking wilderness streams for Brook Trout. With it being my first time getting to use an electrofishing backpack, it was definitely a learning experience. Looking for pools of calm water in the stream, whether it be along the banks of the stream or areas that are directly below large objects, such as boulders, were prime spots that typically held fish. Being able to recognize where the fish might be located helped the success rate of capture and, ultimately, data collection. The downside of using the electroshocking backpack for the first time was learning how to maneuver through a fast-flowing stream carrying the backpack while maintaining balance at the same time. When electrofishing, once shocked fish were caught, gaining experience using a PIT Tag reader, along with processing fish via PIT Tagging, weighing, and measuring the total length of each fish was beneficial for a future career in the fisheries field.

Brook Trout


A project that the intern program was able to assist in conjunction with Klamath Fish Hatchery consisted of working with the shortnose sucker and Lost River sucker. The task involved operating a skiff boat on the Williamson River and catching fish larvae with dip nets and storing them in coolers. Being out on the water, we were able to obtain experience driving the boat down the Williamson River, as well as loading the boat onto the trailer at the end of the day. Being able to obtain boating experience was awesome, as knowing how to operate and load a boat is highly sought after in the fisheries and wildlife field. Once returned to the hatchery with coolers filled with fish larvae, the larvae were individually counted and put into rearing tanks. Although counting each individual fish for a couple hours per day was draining, it was exciting knowing that our work is helping with the conservation of each species, as the two species of suckers are currently endangered.

Shortnose sucker and Lost River sucker larvae


One of the more adventurous projects consisted of going out snorkeling to look for Bull Trout. Coming from the desert in New Mexico where it is very dry, I have never gotten the chance to go snorkeling. Although the water was super cold and we didn’t catch a glimpse of any Bull Trout, being able to see schools of Speckled Dace in the water swimming around was awesome. The benefit of snorkeling was it helped sharpen our fish ID skills while we were identifying fish species in aquatic habitats.


One of the last projects we have completed recently involved banding geese in conjunction with a local wildlife refuge. Banding is a useful tool to gather data on breeding and wintering distribution, behavior, reproduction, survival, and migratory routes of migratory birds. The task involved using kayaks to direct flocks of geese that were on the water toward the shoreline where a fenced pen was set up. It took a lot of patience trying to keep the flock together as much as possible while also trying to push the flock towards the shore. Once the geese were on the shore and enclosed within the holding pen, it got hectic really quick. The process consisted of picking up each individual goose from the pen, determining the sex and age (i.e., hatch-year, mature), banding the goose, and returning it to the water. Over the last couple of days of geese banding, the process has gone a lot smoother as I have gotten more experience banding the birds.

Canada Geese


In conclusion, the conservation and land management internship has been really enjoyable, along with being beneficial in getting to experience helping with numerous fisheries and wildlife projects that the Klamath Falls Fish and Wildlife Office conducts on a daily basis. Although a job within the fisheries and wildlife field can be stressful at times, especially if one is moving from seasonal job to seasonal job with no luck on permanent employment, the projects that are conducted within a job can be very rewarding at times, in which I would recommend this type of fieldwork to any individual searching for a career path.