Lightning came in on the telephone line

against the harsh rock peak, the delicate glass and wood of the lookout’s cabin stands defiant in the wind, a beacon in a sea of mountains

to lie down is to touch two of the four log walls

a dry bear grass bed on the wood slat floor

two chairs, one for the lookout and another for the ranger when he visits

instruments to measure fire direction and a man and the telephone line to bear witness

mules haul soda + yeast for the morning pancakes and letters to remember the world by

lard + milk and some ivory soap

a dozen candles to keep a flame to watch for fire by

streams seldom flow uphill; the smokechaser wakes at dawn break to fill his water bag miles below

upon the ascent, towards the top of the world, the world gets smaller

the alpine climate, above the tree line, the church spire tops of sub-alpine firs bow down to a forest in miniature

dwarf willows and mushrooms the size of fingernails and fairy spoons keep close to the ground in that windswept place

in the evening, the dispatchers open the telephone lines between the lookouts

they talk with the phones hung around their necks and call out checker moves, the hands free to play for two

* * *

and at night, the lightning

there is a smell to lightning, and a transmutative quality in its anticipation

coyote yips sound like human cries and then all is the crash of clouds

the wind washes you clean, sleeping in the slipstream

and that smell of static in the air, like mother drying clothes, of oxygen split to ozone

blind and searching, the blue energy seeks contact

lightning came in on the telephone line

the pathway of least resistance through the wire and then the water body

storm paths recorded faithfully by the earthbound

but with every added observation, reality looms larger and faith in prediction faulters

the recorder turned conductor and split asunder by his very own nature

the spirit may be displaced for some period, the forest of neurons lit momentarily by an alien fire

freeing of space again and maybe we return, and maybe the rolling clouds wash us clean

“lightning may do no damage to the wire, or it may burn the telephone wire completely”

mountain goats clamor back to the peaks

man sits at the telephone, about to speak

a dial tone, contact missed a beat

— Grace D.

* * *

A lightning strike my uncle caught on camera

This poem is inspired by recent events and old stories. While researching the Hungry Horse Dam for my last blog post, I came across two histories of the Flathead National Forest: The Flathead Story by Charlie Shaw and Trails of the Past by Kathryn McKay. Both histories are extensive and cover many aspects of early forest service happenings and 19th and 20th century life in the area. I was particularly drawn to the sections on fire lookout life and lightning. The quoted section in the poem, “lightning may do no damage to the wire, or it may burn the telephone wire completely” is quoted directly from Shaw’s chapter on lightning (The Flathead Story (Chapter 26)). The details in the poem concerning food rations and daily lookout life are also inspired by descriptions from both histories. I was moved by a tragedy that occurred near Pagoda Lookout involving two men maintaining a telephone line during a lightning storm. If you wish to read about this event, the story is in the last paragraph of Shaw’s chapter on lightning (The Flathead Story (Chapter 26)).

“Robert’s Lookout” still standing today in Eureka, MT. The original lookout was a “crows nest” style, built in 1920. The structure seen here was built in 1920 and originally stood at Roberts Mtn west of Fortine, MT. Ross “Shorty” Young was stationed here from 1924 to 1943.

Last week I attended a local short film festival in Missoula, MT. One film that stuck with me was “The Lookout.” The film is not (yet?) available online, but if you are interested in details regarding the actors and the director, there is a profile on IMDb (The Lookout (Short 2024) – IMDb). Stay tuned for eventual public release of this film. The film opens on a lone lookout and his simple life. Strange, foreboding signs start to haunt him, bringing into question both his true nature and the environment’s true nature. People are not what they seem, and nature reclaims what was once believed separate. A still from the film of pancake batter dripping off a fire pit and clear secretions running from the lookout’s nose reveal an unknown, lurking presence. In the midst of all this creeping horror, there is great beauty in the landscapes and the natural world. I thought of this film, too, while writing this poem about the wonder and the terror of being outside, exposed to the elements.

A break in the storm on a hike near Trapper Peak in the Bitterroot National Forest; I only spent about fifteen minutes at the lake because of the foreboding clouds. On the way up to the lake rain came down in buckets.

The smell of lightening is very real, and it appears to be the smell of ozone (Cappucci 2018). For myself, lightning strikes a primal fear in me, and I have rushed down several trails to get away from a high alpine lake as dark clouds gathered around the peaks. On our drive back from delivering seed to the Coeur D’Alene Seed Nursery, my co-intern and I listened to a talk with Cathy Cripps, an alpine mycologist (Ep. 113: Mushrooms of the Rocky Mountains and Arctic Alpine Biome (fea – Mushroom Hour). She talked about her work in alpine climates and the world in miniature up there. She studied short willow forests and their mycorrhizal associations with alpine fungi and her pioneering work with mycorrhizal fungi in white bark pine restoration.  

The rock I hunkered under while the storm dumped rain and lightning crackled.

I discovered many things about the world and about myself this season. Thank you to the Flathead National Forest botany department, my co-intern Erynn, and many others who made this season so wonderful.

A slow portion of the Flathead River, only a few minutes down the road from where I stayed in Kalispell this summer.

References

Cappucci, Matthey. “Lighting Has a Smell, and the Science Behind it is Beautiful.” The Washington Post. (2018). https://www.sciencealert.com/here-s-why-you-can-actually-smell-lightning

McKay, Kathryn L.  “Trails of the Past: Historical Overview of the Flathead National Forest, Montana, 1800–1960.” Flathead National Forest. (1994). http://www.npshistory.com/publications/usfs/region/1/flathead/history/#:~:text=TRAILS%20OF%20THE%20PAST:%20Historical%20Overview

Shaw, Charlie. “The Flathead Story.”  USDA Forest Service, Flathead National Forest. (1967) http://www.npshistory.com/publications/usfs/region/1/flathead/story/index.htm#:~:text=THE%20FLATHEAD%20STORY.%20By.%20Charlie%20Shaw.

Shaping a River: the Hungry Horse Dam

On a cool September day, my co-intern and I drove the fifty miles on a dirt road to the Spotted Bear Ranger Station. The road follows the winding, rugged shoreline of the Hungry Horse Reservoir. Pulling into the station’s office, we noticed a fringe of orange flames burning lazily up the mountain. We wondered if we would still be able to stay at the bunkhouse that night. We soon learned that a prescribed burn was taking place, carefully planned around the several inches of rain predicted that night and the next day. The morning proved the weather forecast correct. A mist hung about the road as we drove past the ranger station the next morning on our way to Meadow Creek Gorge. The gorge is reminiscent of what the Hungry Horse landscape may have looked like before the reservoir, before the inundation of the long, steep valley carved by the South Fork of the Flathead River.

The swimming hole at Spotted Bear Ranger Station
Smoke and mist settling in the Meadow Creek Gorge

At Meadow Creek Trailhead, we spoke with a few visitors who had turned southeast, away from the gates of Glacier National Park, and towards the remote Bob Marshall Wilderness. One of the visitors, a fisherman, mentioned the beneficial impact of the Hungry Horse Dam in preventing nonnative fish from swimming upstream and degrading habitat for native cutthroat and bull trout. This comment, said in passing, catalyzed a world of exploration for me as I delved into the dam’s history and ecological impact.

View of the reservoir at the top of the Hungry Horse Dam
Hungry Horse sign

On our next trip down to Spotted Bear, we stopped at the dam’s visitor center, perched halfway up the steep mountainside, along the road that runs overtop the dam. A sign in the art deco style of “The Big Dam Era” — in its heyday from the 1930s to 1960s (Lee 2023) — announces the dam. Finished in November 1953, the Hungry Horse Dam was a crowning achievement of the era. Standing at 564 feet, it was  the second tallest dam in the world at the time of its completion (McKay 1994). Black and white photographs in the visitor center document the larger-than-life engineering feat of the dam’s construction. Tiny figures of men stand in miniature within the 12-foot diameter spillway tunnel. Yet these men moved mountains, blasting a tunnel through the adjoining rock wall to divert the river during dam construction.

Man inside the giant spillway tunnel; photo from the Hungry Horse Visitor Center
The diversion tunnel the river flowed through while the dam was being built; photo from the Hungry Horse Visitor Center

The little town of Hungry Horse, still standing today, sprung up to support the laborers. The town and dam are named after an incident in the winter of 1900. Two men hauling equipment over the South Fork of the Flathead River noticed, after the river crossing, that two of their horses, Jerry and Tex, were missing. A month later the horses were found “belly deep in snow and nothing but skin and bones” (Stene 1995). The horses were nursed back to strength and lived out their days in nearby Kalispell, but the area bears witness to their hungriest hour. A large steel ball, painted a garish silver, stands as a mysterious testament to the town’s origin. The dam building started not with pouring the dam’s concrete but with clearing trees from the flow area to limit debris in the reservoir. (Grant 2018). Several logging companies took up the herculean task of clearing the 37 square miles of land in the reservoir’s path (McKay 1994). The large steel ball standing in Hungry Horse today was used in the “highball” clearing method that could clear 200 acres in 4 hours (McKay 1994; Grant 2018). The ball, 8 feet in diameter and 8,000 pounds in heft, was not a wrecking ball but rather a weight (Shaw 1967). A long cable, secured between two bulldozers and held fast at the center by the heavy ball, was used to drag down and uproot trees. Using this unusual method along with more conventional methods, loggers harvested 90 million board feet of timber from the area in just a few years (Grant 2018).

8,000-pound steel ball used in the “highball” clearing method
“Highball” clearing method in-action

Once completed in 1953, the dam backed up the South Fork of the Flathead River for 34 miles and flooded about 22,500 acres of land (McKay 1994). Today, the dam still fulfills its original purpose, generating electricity, regulating water flow for flood mitigation, and acting as water storage for downstream dams in the greater Columbia River Basin system. The Hungry Horse reservoir is one of two other headwater reservoirs for the Columbia River Basin, the other being the Koocanusa Reservoir in the adjacent Kootenai National Forest. Together, these two reservoirs provide approximately 40% of the usable water storage in the U.S. portion of the Columbia Basin (Muhlfeld, 2012). The Hungry Horse dam impacts both local and regional ecosystems, since water from the reservoir travels more than 1,100 miles from Montana’s mountains to the Pacific Ocean. Some of those impacts are obvious, like the creation of a lake from a river. Other impacts are less so.

Aerial view of the dam
This sign outside the visitor center shows just a few of the almost 60 dams in the Columbia River watershed

The dam’s four penstocks (gates that direct water to the turbines) are located 241 feet below the reservoir level. Water at that depth maintains a year-round temperature of about 38F, which is quite a bit colder than summer surface temperatures of up to 68F (Christenson et al., 1996). Biologists speculated that the dam’s cold-water discharge would modify the downstream river ecology (Christenson et al., 1996). By the 1980s, biologists with Montana Fish, Wildlife and Parks were recording falling native trout populations, stunted trout growth rates, and changes in the trout’s prey, macroinvertebrates. They also found unusually large numbers of cold-water lake trout in the Flathead river’s main stem. The cold water offered an ideal habitat for the voracious lake trout which fed with abandon on juvenile cutthroat and bull trout (Cristenson et al.,1996). The food web was changing. To combat these effects, the discharged water needed temperature control (Standford et al., 1992). A “Selective Withdrawal System” was installed in August 1996. The system placed 100-foot-long selective depth outlet structures over the penstocks.  Warm surface water could be skimmed off the top of the reservoir and mixed with cooler water anywhere from 30 to 200 feet below the water’s surface. Electronic temperature sensors ran the length of the structures and informed which outlets to open and close to produce the required water temperatures. The system is still in use and begins operations each year in June after spring runoff flows reduce and continues until October. The release of warmer water during the biologically productive summer months has eliminated the artificial cooling of the river and returned it to its pre-dam annual temperature cycle (State of Montana, 2014).

Selective Withdrawal System information board at the Hungry Horse Dam Visitor Center

In the almost 30 years since its installment, the selective withdrawal system has measurably affected the surrounding ecosystem. Eliminating cold discharges during summer appears to have restricted the movement of non-native lake trout upstream from Flathead Lake (Muhlfeld et al., 2012). Studies on macroinvertebrate populations are mostly inconclusive though there are some signs of slightly improved benthic macroinvertebrate assemblages in the South Fork River, downstream of the dam (Richards, 2010).  The selective withdrawal system allows some aspects of the downstream river to return to pre-dam conditions, but other aspects cannot be so easily turned back. Flow regulation for flood control and power generation has resulted in an inversion of the natural hydrograph; water storage during spring keeps run-off low and release of water during summer, fall, and winter keeps flows unnaturally high (Muhlfeld, 2012). The current flow management strategy simulates natural flow conditions to maximize bull trout habitat in the South Fork of the Flathead River by keeping flows lower, but flows must still remain artificially high to augment flow for anadromous fish recovery hundreds of miles downstream, in the lower Columbia River Basin (Muhlfeld, 2012). Caught in a web of ecological consequences, changing one thing then affects another, achieving all pre-dam conditions is elusive. Can a controlled river really be made to mimic a natural river?

The visitor’s passing comment about one of the beneficial effects of the dam is true; the dam has proven an effective barrier against nonnative fish. The South Fork River upstream of the Hungry Horse Dam contains one of the largest self-sustaining populations of westslope cutthroat trout in existence (Marotz et al., 1996). The reservoir also supports a stable bull trout population, which can be attributed to the relatively undisturbed spawning tributaries in the Bob Marhsall Wilderness upstream of the dam (Marotz et al., 1996). Moreover, the dam provides clean, renewable energy, critical as we try to slow down human-caused climate change. Yet, by removing the historical disturbances of flood and drought cycles through flow regulation, the biological characteristics of the downstream Flathead River have been altered (Schmutz and Moog, 2018; Muhlfeld, 2012). And, of course, the reservoir itself has buried an entire landscape and its local ecosystem under hundreds of feet of water. The Hungry Horse dam created a new ecosystem while also preserving some aspects of the past ecosystem. Some impacts of the dam can be mitigated, while other impacts require adaptation in human, animal, and plant lifestyle.

The land southeast of the reservoir, past the Spotted Bear Ranger Station; the mist over the old burn area looked like a fantasy novel setting

References

Christenson, D. J., Robert L. Sund, and Brian L. Marotz. “Hungry Horse Dams successful selective withdrawal system.” Hydro Review 15.3 (1996).

Grant, James A. “Historic Logging Uses and Timber Management at Hungry Horse Reservoir.” U.S. Bureau of Reclamation. (2018). https://www.bpa.gov/-/media/Aep/environmental-initiatives/cultural-resources/historic-logging-uses.pdf

“Hungry Horse Reservoir, Montana: Biological Impact Evaluation and Operational Constraints for a proposed 90,000-acre-foot withdrawal.” State of Montana. September 14, 2011. https://dnrc.mt.gov/_docs/water/Appendix_8_StateBiologicalConstraintsMemo.pdf

Lee, Gabriel. “Overview: The Big Dam Era.” Energy History Online. Yale University. (2023). https://energyhistory.yale.edu/the-big-dam-era/.

Marotz, B. L., et al. “Model development to establish integrated operational rule curves for Hungry Horse and Libby Reservoirs—Montana.” Report to the Bonneville Power Administration. Montana Fish, Wildlife & Parks, Kalispell (1996).

McKay, Kathryn L.  “Trails of the Past: Historical Overview of the Flathead National Forest, Montana, 1800–1960.” Flathead National Forest. (1994). http://www.npshistory.com/publications/usfs/region/1/flathead/history/#:~:text=TRAILS%20OF%20THE%20PAST:%20Historical%20Overview

Muhlfeld, Clint C., et al. “Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA.” River Research and Applications 28.7 (2012): 940-959.

Richards, David C., and Montana Fish, Wildlife & Parks. “Possible effects of selective withdrawal-temperature control at Hungry Horse Dam, nuisance growth of Didymosphenia geminata, and other factors, on benthic macroinvertebrate assemblages in the Flathead River.” Report to Montana Fish, Wildlife & Parks, Kalispell MT (2010).

Schmutz, Stefan, and Otto Moog. “Dams: ecological impacts and management.” Riverine ecosystem management: Science for governing towards a sustainable future (2018): 111-127.

Shaw, Charlie. “The Flathead Story.”  USDA Forest Service, Flathead National Forest. (1967) http://www.npshistory.com/publications/usfs/region/1/flathead/story/index.htm#:~:text=THE%20FLATHEAD%20STORY.%20By.%20Charlie%20Shaw.

Stanford, Jack A., and F. Richard Hauer. “Mitigating the impacts of stream and lake regulation in the Flathead River catchment, Montana, USA: an ecosystem perspective.” Aquatic Conservation: Marine and Freshwater Ecosystems 2.1 (1992): 35-63.

Stene, Eric A. “Hungry Horse Project.” U.S. Bureau of Reclamation. (1995) https://www.usbr.gov/projects/pdf.php?id=125

Caring for the Future: Seed Banks and Nurseries

A howling, cold wind forced the small crew of scientists to huddle closer. The group’s navigator glanced from her rudimentary compass to the horizon, concentrating her tired eyes on a small dark shape that stood opposed to the pale, starlit snowfields. The group was traveling in the Artic Circle, a land no more desolate now than most of the post-apocalyptic planet. At last, a man-made building resolved itself against the pale dawn. The tall concrete walls cut the wind and a quiet fell upon them. The navigator faced the stainless-steel entrance of the imposing tomb. She knew, though, that life lie frozen, preserved in that breathless place in the form of seeds. Millions of seeds, preserved by people of the past for the unknown future, contained the hope for replenished agriculture and revegetation. She had reached the ‘Doomsday Vault’ — the Svalbard Global Seed Vault.

Not the Svalbard Global Seed Vault but looks like a sci-fi building! Saw this radio equipment (?) on Blacktail Mountain, Flathead National Forest, Montana.

In the popular imagination, seed vaults conjure up post-apocalyptic visions of bunker-like warehouses filled with crop seeds for kickstarting a new human civilization. Helen Anne Curry, in her paper “The history of seed banking and the hazards of backup,” discusses the origin of this doomsday fear: a survival strategy for mid-20th century Cold War anxieties. The Cold War inspired a frenzy of record backups, computer and communication system redundancies, and other safeguards against global environmental catastrophes. Saving seeds represented an insurance policy for our food, forests, and the green of our planet. The Fort Collins Seed Bank in Fort Collins, Colorado fulfilled this need for redundancy, with the first “Fort Knox of the seed world’ opening in 1958 (Curry, 2022). The Svalbard Global Seed Bank, built almost 50 years later, continues to assuage similar fears but it also represents a more active, dynamic approach to modern day seed-saving needs. The Svalbard Seed Vault, located in the remote Artic Svalbard archipelago, functions quite literally as a seed “bank” in which a nation or organization deposits seeds in a safe box that is then available for withdrawal at the depositor’s request. Svalbard is a backup for the thousands of other seed banks throughout the world, a safeguard against the worst, but it is not a sealed off seed tomb. The seed vault regularly accepts deposits and honors withdrawals. To date, the only withdrawals have been from Syria in 2015 and 2017 due to the civil war disrupting a gene bank located in Tel Hadya, Syria (Dan, 2015).

Many organizations concerned with plant conservation and genetic diversity like botanical gardens, university laboratories, and nurseries, partake in some form of seed saving. The ability to preserve living plants, in the form of a seed, offers a highly adaptable opportunity for humanity to realize the needs and goals for both our local and global plant communities.

Conifer seeds stored in drums in the cold storage freezers at the Coeur d’Alene Seed Nursery; not as cold as Svalbard!

How It’s Made: Trees (and Plants) for Future Forests

My co-intern and I visited the USDA Coeur d’Alene Seed Nursery in Coeur d’Alene, Idaho this month. The 220-acre nursery includes 25 greenhouses, 130 acres of bareroot seedbeds, multiple buildings for seed extraction, and numerous freezers for seed banking. The nursery provides native conifer, forb, and grass seedlings and seed mixes mainly for Region 1 National Forests in Idaho, Montana, and North Dakota (USDA Forest Service). The nursery participates in many projects including the Northern Region’s Tree Improvement program for growing and testing Whitebark pine seedlings for blister rust resistance. The forest I am working with, the Flathead NF, is sending seed to the nursery for extraction and use in grow outs to increase seed number of our target species. Eventually, the bulk-grown seed will form pollinator seed mixes for use back on the Flathead NF in disturbed areas.

We first toured the huge, industrially-sized “Seed Extractory”. Large boxes, each holding hundreds of pinecones, are stacked from floor to ceiling (see picture for scale). Hot air is pumped through the stacked boxes, turning the whole pinecone-filled column into a kiln. The heat opens the cones and releases the seeds. Inside the main building, ductwork lines then walls and ceiling, moving air from one machine to another, providing a means to separate the dense seed material from the chaff. Screens of different sizes could be fitted into the various sifting and sorting machines to accommodate a wide range of seed sizes. A sample from each batch of purified seed is then tested vias X-ray for seed viability. X-rays reveal dried-up embryos or hollow seeds that would otherwise escape notice. The nursery manager described the importance of creativity in purifying seeds and the lack of standardization in the seed cleaning processes since each species requires unique troubleshooting. Some seed extraction, despite all the helpful machinery, must be done by hand. This is the case for Whitebark pine (Pinus albicaulis). Whitebark pine is considered a “stone pine” due to the cone scales never opening, even when the seeds are ripe. Heating the cones up in the kilns only makes the scales close more tightly. The cones must be cracked open by hand, imitating the natural forces they encounter in the wild—being crunched by grizzly bear jaws or cracked by awl-like beaks of the Clark’s nutcracker (National Park Service).

We next moved to the storage room, which contained huge walk-in freezers that housed enough conifer seeds to meet revegetation goals for Region 1 Forests for the next 10 to 20 years! Conifer seed, like other “orthodox seed,” can withstand freezing and drying for long periods of time. Some samples of Lodgepole pine seeds stored at the nursery since the 1960s still have a 70% germination rate (Robertson, 2024). The freezers at the nursery are not as cold as the -18C of the permafrost-entombed Svalbard Global Seed Vault (Hopkin, 2008). Seeds stored at higher temperatures, a warmer -2C, are not destined for potentially century-long storage. Rather, these seeds are used for ongoing projects and near-future seed planting. Pollen and seed from white pine blister rust resistant conifers is stored in the freezers for the Northern Rocky Tree Improvement Project. Four defense mechanisms against the blister rust have been genetically isolated and some conifer species, represented in the freezer, contain all four mechanisms of resistance (Robertson, 2024). Seed banks, nurseries, vaults, and libraries provide the necessary storage space for reassurance that genetic diversity can be maintained for both short-term and long-term conservation goals.

White pine blister rust infection (Cronartium ribicola); evident as the orange scab-like protrusions on the bark
My co-intern Erynn (on the left) and I with some pollen from a white pine blister rust resistant conifer

Reimagined Visions: Keep Cool and Save Seeds

While the fear of global environmental catastrophe still informs certain aspects of seed banking, seed saving today serves many other interests and needs. The Millenium Seed Bank Partnership stores seeds from 13% of the world’s wild flowering plants, representing a concern for the ex-situ conservation of wild plants as opposed to seed banking of only economically or agriculturally useful plants (Lewis-Jones, 2019). USDA Seed Extractories and Nurseries like the one we visited in Coeur d’Alene increase the availability of native seeds adapted to local, native growing conditions (Kantor et al., 2023). Smaller seed banks, housed in non-profits or botanical gardens, provide localized seed collections of endemic or culturally and historically significant plants. Seed libraries provide an even more dynamic and accessible service in which people from the community can lend and share seed among themselves. Seed saving of any kind represents a “partnership” of the “the mobile species helping the immobile species” and, of course, vice versa (Lewis-Jones, 2019).

Boxes of trees, ready for shipment, with an apt slogan: “Trees for Future Forests.”

References

“Coeur d’Alene Nursery.” USDA Forest Service. https://www.fs.usda.gov/detail/ipnf/about-forest/districts/?cid=stelprdb5085769. Accessed 30 August 2024.

“Whitebark pine.” National Park Service. https://www.nps.gov/crla/learn/nature/whitebark-pine.htm. Accessed 1 September 2024.

Curry, H. A. (2022). The history of seed banking and the hazards of backup. Social Studies of Science, 52(5), 664-688. https://doi.org/10.1177/03063127221106728

Dan, Charles. “Reclaiming Syria’s Seeds From An Icy Arctic Vault”. NPR, 24 September 2015, https://www.npr.org/sections/thesalt/2015/09/24/443053665/scientists-tap-seed-vault-to-rebuild-a-vital-collection-stranded-by-war. Accessed 30 August 2024.

Hopkin, M. Biodiversity: Frozen futures. Nature 452, 404–405 (2008). https://doi.org/10.1038/452404a

Kantor, S., Runyon, J., Glenny, W., Burkle, L., Salix, J., & DeLong, D. (2023). Of bees and blooms: A new scorecard for selecting pollinator-friendly plants in restoration. Science You Can Use Bulletin, Issue 58. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 11 p.

Lewis-Jones, K.E. (2019), “The First Step Is to Bring It Into Our Hands:” Wild Seed Conservation, the Stewardship of Species Survival, and Gardening the Anthropocene at the Millennium Seed Bank Partnership. Cult Agric Food Environ, 41: 107-116. https://doi.org/10.1111/cuag.12238

Robertson, Nathan. “Tour of the Coeur d’Alene Nursery”. Coeur d’Alene Nursery, Coeur d’Alene, Idaho. 20 August 2024.

Plants of medicine, myth and modernity

Plants shape our historical and modern worlds

For many of us in the modern age, plants blend into the background. The joy of this internship, and other outdoor work, is the movement of plants to centerstage again as primary shapers of the world. Not long ago in Europe and much more recently in North America, plants were the primary suppliers of medicine and raw materials. Here in and around the Flathead National Forest, plants were imperative for everyday life of the Salish and Kootenai people. An exhaustive list of plants and their traditional uses is not possible here, but important edible plants included Serviceberry, Huckleberry, and Camas (Bear Don’t Walk, 2019). Plants for raw materials included Apocynum cannabinum for rope, Salix (willow) for fish traps, and Holodiscus discolor (oceanspray) for digging stick handles (Ryan, 2024). In the paragraphs to follow, I focus on three medicinal plants, common and widespread across multiple continents, that many cultures used and still use today. The independent use of these plants for similar ailments across different cultures corroborates their effectiveness.  The application of these plants goes back thousands of years, with the origin of their medicinal value shrouded in myth and legend but their effectiveness indisputable and tangible with the modern-day scientific isolation of their bioactive compounds.

The view from Doris Mtn, looking west across the Flathead valley

Yarrow: ancient medical hero

Yarrow, the common name for various plant species in the Achillea genus, is widespread throughout Eurasia and North America. Species of Achillea have been used for thousands of years in the treatment of wounds, infections, inflammation and skin conditions (Applequist & Moerman, 2011). Yarrow pollen was unearthed at the 65,000-year-old burial site of several Homo neanderthalensis in a cave near Shanidar, Iran (Applequist & Moerman, 2011). The genus name, Achillea, honors the ancient Greek mythological hero Achilles. Achilles was not just a famed (nearly invincible) warrior; he was also trained in the arts of medicine by his tutor, Chiron the Centaur. The ancient Greeks believed Achilles discovered the astringent properties of Yarrow and carried it with his army to stem bleeding wounds (Chandler et al.,1982). In addition to wound healing, the Salish boiled leaves and stems of Achillea millefolium for colds and made a compress out of the leaves for toothaches (Hart,1979).

Modern-day chemical analysis and assays of the bioactive compounds in Achillea reinforce traditional medicinal uses. Sesquiterpenes isolated from yarrow display anti-inflammatory properties through inhibition of COX-2, an enzyme involved in inflammation and pain (Applequist & Moerman, 2001; Benedek & Kopp, 2007). Extracts of four Achillea species, including the Achillea millefolium species found in the Flathead National Forest, showed a broad spectrum of antimicrobial activity against seven different strains of pathogenic bacteria and fungi (Saeidnia et al., 2011). The aromatic, delicately feathered leaves and cloud-like flower heads of yarrow contain compounds for a familiar and ever-present need: wound-healing.

Yarrow, Achillea millefolium, in flower

St. John’s Wort: revered and reviled

St. John’s Wort, Hypericum perforatum, is native to Eurasia and North Africa, but is now so common in North America it is often considered a noxious weed. The showy, yellow flowers and glandular leaves contain numerous bioactive compounds that are harmful to grazing animals but prove useful for human medicine. St. John’s Wort was used in traditional Chinese, Greek, and Islamic medicine for depression, anxiety, nerve pain, wounds, infections, and inflammation (Barnes et al., 2001). The scientific genus name, Hypericum, is ancient Greek for “above” (hyper) and “picture” (eikon). “Above picture” refers to the tradition of hanging the revered and powerful plant over religious icons (Barnes et al., 2001). The common name, St. John’s Wort, originates from the practice of harvesting the plant during the Midsummer festival, later Chirstinaized as St. John’s Feast Day. Harvesting the flowers at such an auspicious time was believed to make the herb’s healing and magical powers even more potent (Trickey-Bapty, 2001). On the festival day, St. John’s Wort was hung over doorways to ward off evil spirits. This practice inspired another common name: “fuge daemonum” (demon-flight).

Fields of the tall yellow flowers, which excrete a rusty red compound when crushed, are a familiar site along disturbed roads, old logging sites, and burns here on the Flathead National Forest. The plant’s bioactive compounds give it both medicinal properties and also invasive advantages, since the plant engages in allelopathy and releases chemicals into the surrounding soil that inhibit other species’ germination and growth (Aziz, 2006). Chemical analysis reveals two significant bioactive compounds, hypericin and hyperforin, that support several of the traditional uses of St. John’s Wort (Barnes et al., 2001). Hyperforin appears to inhibit serotonin uptake, analogous to conventional selective serotonin reuptake inhibitors (SSRIs), as well as inhibit the uptake of other neurotransmitters like dopamine and norepinephrine (Barnes. 2001). These antidepressant activities are substantiated in randomized controlled studies where the herb is more effective than a placebo and as effective as several conventional antidepressants in mild-to-moderate depression (Barnes, 2001). Hyperforin shows significant antimicrobial and antifungal effects as well as increased collagen synthesis which expediates wound healing (Nobakht, 2022).

St John’s Wort, the plant of demon-flight

A family of pungent herbs: the Mints

One of the oldest surviving medical texts in the world, the ancient Egyptian Ebers Papyrus from 1550 BC, recommends mint for stomach pain and flatulence (Pickering, 2020). The Salish and Kootenai as well as the Blackfeet used a local mint family member, Monarda fistulosa (Beebalm), for stomach pain, toothaches, colds, and fevers (Anderson; Hart 1979). Monarda fistulosa contains thymol, a strong antiseptic, with a cooling, strong flavor and odor that is popular today in mouthwashes and toothpaste (Lawson et al., 2021). The Salish rubbed Monarda fistulosa on the body for a mosquito repellant and sprinkled dried leaves on meat and berries to repel flies and preserve food (Bear Don’t Walk, 2009). The antimicrobial activity of the plant is attributed to terpenoids that slow the growth of certain pathogenic bacteria, like Streptococcus aureus (Anwar et al., 2019). Members of the mint family include an array of herbs such as beebalm, self-heal, horsemint and thyme that caught the attention of people as possessing the revered ability to heal.

Many cultures throughout the ancient and indigenous world recognized the medicinal properties of Yarrow, St. John’s Wort, and mint. The long-standing importance of these plants in the human story explains their persistence as daily shapers of our world today.

References

Anderson, M. Kat. “Wild Bergamot.” United States Department of Agriculture. https://plants.usda.gov/DocumentLibrary/plantguide/pdf/pg_mofi.pdf

Anwar F, Abbas A, Mehmood T, Gilani A-H, Rehman N. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytotherapy Research. 2019; 33, 2548–2570. https://doi.org/10.1002/ptr.6423

Applequist, W.L., Moerman, D.E. Yarrow (Achillea millefolium L.): A Neglected Panacea? A Review of Ethnobotany, Bioactivity, and Biomedical Research1 . Economic Botany 65, 209–225 (2011). https://doi.org/10.1007/s12231-011-9154-3

Azizi, M. and Fuji, Y. (2006). ALLELOPATHIC EFFECT OF SOME MEDICINAL PLANT SUBSTANCES ON SEED GERMINATION OF AMARANTHUS RETROFLEXUS AND PORTULACA OLERACEAE. Acta Hortic. 699, 61-68 DOI: 10.17660/ActaHortic.2006.699.5 https://doi.org/10.17660/ActaHortic.2006.699.5

Barnes, J., Anderson, L.A. and Phillipson, J.D. (2001), St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. Journal of Pharmacy and Pharmacology, 53: 583-600. https://doi.org/10.1211/0022357011775910

Bear Don’t Walk, Mitchell Rose, “Recovering our Roots: The Importance of Salish Ethnobotanical Knowledge and Traditional Food Systems to Community Wellbeing on the Flathead Indian Reservation in Montana.” (2019). Graduate Student Theses, Dissertations, & Professional Papers. 11494. https://scholarworks.umt.edu/etd/11494

Benedek, B., Kopp, B. Achillea millefolium L. s.l. revisited: Recent findings confirm the traditional use. Wien Med Wochenschr 157, 312–314 (2007). https://doi.org/10.1007/s10354-007-0431-9

Chandler, R.F., Hooper, S.N. & Harvey, M.J. Ethnobotany and phytochemistry of yarrow, Achillea millefolium, compositae. Econ Bot 36, 203–223 (1982). https://doi.org/10.1007/BF02858720

Hart, Jeffrey A. “The ethnobotany of the Flathead Indians of Western Montana.” Botanical Museum Leaflets, Harvard University 27.10 (1979): 261-307.

Lawson SK, Satyal P, Setzer WN. The Volatile Phytochemistry of Monarda Species Growing in South Alabama. Plants. 2021; 10(3):482. https://doi.org/10.3390/plants10030482

Nobakht SZ, Akaberi M, Mohammadpour AH, Tafazoli Moghadam A, Emami SA. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran J Basic Med Sci. 2022 Sep;25(9):1045-1058. doi: 10.22038/IJBMS.2022.65112.14338. PMID: 36246064; PMCID: PMC9526892.

Pickering, Victoria. “Plant of the Month: Mint.” JSTOR Daily, 1 April 2020, https://daily.jstor.org/plant-of-the-month-mint/.

Ryan, Tim. “Ethnobotany of the Confederated Salish & Kootenai Tribes.” Montana Native Plant Society Annual Meeting, 28 June 2024, Camp Utmost, Greenough MT. Lecture.

Saeidnia S, Gohari A, Mokhber-Dezfuli N, Kiuchi F. A review on phytochemistry and medicinal properties of the genus Achillea. Daru. 2011;19(3):173-86. PMID: 22615655; PMCID: PMC3232110.

Trickey-Bapty C (2001). Martyrs and miracles. New York: Testament Books. p. 132. ISBN 9780517164037.

A spectrum of relationships in the human and ecological community: mutualism to parasitism

Moving: frequently underestimated

Moving always comes with unexpected problems. After living in Missoula, MT for the last two years, I moved up to Kalispell for this internship. I uprooted quite an extensive system of familiarity, but there are some connections that withstand the uprooting and room is made for new ones. I have had to regroup and reassess what relationships sustain me, and what resources and opportunities to pursue. The relationships built in human and ecological communities can both sustain and harm the player/actor and it is impossible in either world to live outside the web of connections. My co-intern and I have seen and learned a lot since we started a month ago, and below I share some stories of plants we encountered in their interconnected ecological webs, and the unusual and unique ways of life they devise to survive in their communities.  

Tally Lake (the second deepest lake in Montana) is east of Kalispell.

Busy bees and toxic pollen

Flowering plants can develop intimate relationships with their pollinators, like the bumble bee. Some plants require a physical vibration to release pollen held tightly to their anthers, and bumble bees, unlike honeybees, can perform the essential “buzz pollination” that can shake this pollen loose (Dolan et al. 2021). Montana is a uniquely diverse state for bumble bees, with 28 species documented in Montana out of the 45 total found in North America (north of Mexico). This month we participated in the Montana Bumble Bee Atlas project, a community science project gathering data for tracking and conserving bumble bees (Bumble Bee Atlas). We traveled up the gravel road running alongside the North Fork of the Kalispell River (west of Glacier Park) to reach meadows of lupine and buckwheat flowers. The catch-and-release survey we conducted was a small data point in this comprehensive project aimed at sampling hundreds of locations across Montana.

Capture-and-release bumble bee surveys!
North Fork of the Flathead River

Some plants may require buzz pollination, but at least there are several different species of bumble bees to do the job. The Mountain death camas, Zigadenus elegans, has only one pollinator: the miner bee. The death camas is flowering right now, and the plant’s cream-colored flowers, dotted with green nectaries, look inviting. True to its name, however, the entire plant is toxic. Everything from the bulbs to the nectar and pollen contain the deadly neurotoxin zygacene. All pollinators but the miner bee, Andrena astragali, would drop dead if they tasted from this flower. A single bulb is enough to kill a human. Why would a plant kill all but one of its pollinators? The answer lies in the usefulness of the toxin to the miner bee. The kleptoparasitic cuckoo bee lays its eggs next to the miner bee eggs, expecting a meal from the food cache the miner bee left for its own young. Once hatched, the cuckoo bee eats the toxic food cache, laced with zygacene poison from the death camas plant. Only the miner bee has an innate immunity, so the kleptoparasite dies, ridding the miner beehive of the pest. In return, the mountain death-camas gains a loyal, mutually codependent pollinator (Mitton 2022).

The beautiful but deadly Zigadenus elegans

The making of a unique community: the fen and friends

Many of the rare plants we are searching for are encountered in wetlands, particularly fens. A fen is characterized by the presence of peat (sphagnum moss), a pH greater than 6 (neutral to basic), and a year-round supply of mineral-rich groundwater (Keddy 2010). The groundwater chemistry of a fen system determines the fen’s pH, with more basic fens considered “rich” in terms of species richness and more acidic fens considered “poor” (Wassen et al. 1996). Rich fens are often fed by groundwater running through limestone, which produces a bicarbonate buffer against acidity.

We surveyed a rich fen and a poor fen this month. The rich fen was a checkerboard of little microclimates, each inhabited by distinct species carving out little niches. We saw the rare orchid Liparis loeselii, a picky plant, that requires the convergence of many conditions: mossy tussocks to create microtopography, open vegetation, calcareous waters, and specific mycorrhizal fungi associations (Maris et al. 2023). Mycorrhizal associations are of particular importance to orchids. The dust-like seeds of orchids lack energy reserves for the embryo to germinate (Jacquemyn et al. 2017). During orchid germination, mycorrhizae send out hyphae that penetrate the cell wall and feed carbohydrates and nutrients to the tiny orchid. Without this intervention, the orchid lacks the fundamental building blocks to continue development. Different studies have shown the specificity of these associations, revealing the Liparis loeselii preference for a specific saprotrophic fungi in the Tulasnellaceae genus (Maris et al. 2023).

The elusive Liparis loeselii

We also surveyed a poor fen composed predominantly of sphagnum (peat) mosses. The sphagnum mosses acidify and lower the nutrient availability of fens. Both the rich and poor fen contained Drosera rotundifolia, a sundew, but the poor fen contained larger patches. Sundew associate with sphagnum moss, which create floating mossy tussocks of desirable sundew habitat. The high-water table of a fen creates unique challenges for plant species, since nutrients from the soil are not easily attained. Sundew supplements its nitrogen needs by carnivalizing insects (Millett et al. 2012). The plants attract insects with a sugary, sticky mucus that coats the end of many little red stalks on their leaves. Once prey makes contact, the plant can move its tentacle-like leaves, a response called thigmonasty, to place the insect in contact with as many stalks as possible. The plant secretes digestive enzymes that dissolve the insect, and the leaf surface absorbs the nutrient-rich ex-insect soup.

Drosera rotundifolia in association with sphagnum moss
A poor fen composed of more sphagnum moss than a rich fen

Turning tables: myco-heterotrophic and parasitic plants

Almost all orchids are myco-heterotrophic at some point in their lifecycle and with maturity they produce chlorophyll and begin making food of their own. Some orchid species, like those in the Corallorhiza genus, never “grow up” and they remain fully to partially myco-heterotrophic throughout their lifespan. Myco-heterotrophy are reversed plant-mycorrhiza relationships, where carbon exchange goes from fungus to plant (Trudell et al. 2003). These plants are sometimes referred to as “mycorrhizal cheaters.” Lying in the subterranean darkness for most of their lives, these plants mimic their mushroom host’s life cycle, popping up from the ground only to produce a reproductive structure (Zimmer et al. 2008).

Corallorhiza trifida, or yellow coral root, contains some chlorophyll and is only partially myco-heterotrophic

While Corallorhiza and other myco-heterotrophic orchids parasitize fungi, the plant species of the Broomrape family (Orobancheae) parasitize other plants. The seeds of Orobanche uniflora stay in the soil for years, lying in wait until certain chemicals released from nearby plant hosts stimulate germination. The seedlings put out haustoria, rootlike structures, which delve into nearby host root tissue, siphoning off water and nutrients (Kokla & Melnyk 2018). The Latin work “haustor” translates to “the one who drains” and these little vampiric plants have an apt common name: cancer root.

Orobanche uniflora, or cancer root, is completely dependent on its plant hosts for food and water

References

Dolan, Amelia., et al. “Bumble Bees in Montana.” MSU Extension, Aug. 2021, https://apps.msuextension.org/montguide/guide.html?sku=MT201611AG

Jacquemyn H, Waud M, Brys R, Lallemand F, Courty P-E, Robionek A and Selosse M-A (2017) Mycorrhizal Associations and Trophic Modes in Coexisting Orchids: An Ecological Continuum between Auto- and Mixotrophy. Front. Plant Sci. 8:1497. doi: 10.3389/fpls.2017.01497

Keddy, Paul A. (2010). Wetland ecology: principles and conservation (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-139-22365-2. OCLC 801405617

Kokla A., Melnyk C. W. (2018). Developing a thief: Haustoria formation in parasitic plants. Developmental Biology, 442 (1) (2018), pp. 53-59, 10.1016/j.ydbio.2018.06.013

Maris, Louise & Petrolli, Rémi & Selosse, Marc & Legland, Thomas & Pache, Gilles & Griveau, Chantal & Torre, Franck & Lopez-Pinot, Dominique & Marciau, Roger & Bonnet, Véronique. (2023). Impact of the local environmental factors associated to plant-fungi communities on the conservation of Liparis loeselii (L.) Rich. In the French Rhône-Alpes region. Acta Oecologica. 120. 10.1016/j.actao.2023.103929.

Millett, J.; Svensson, B. M.; Newton, J.; Rydin, H. (July 2012). “Reliance on prey-derived nitrogen by the carnivorous plant Drosera rotundifolia decreases with increasing nitrogen deposition”. New Phytologist. 195 (1): 182–188. doi:10.1111/j.1469-8137.2012.04139.x. PMID 22506640

Mitton, Jeff. “A Rare Relationship between Death Camas and Death Camas Miner Bees.” Colorado Arts and Sciences Magazine, 1 Apr. 2022, www.colorado.edu/asmagazine/2022/04/01/rare-relationship-between-death-camas-and-death-camas-miner-bees.

Trudell, SA; Rygiewicz, PT; Edmonds, RL (2003). “Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants” (PDF). New Phytologist. 160 (2): 391–401. doi:10.1046/j.1469-8137.2003.00876.x. PMID 33832180.

Wassen, M.J., van Diggelen, R., Wolejko, L. et al. A comparison of fens in natural and artificial landscapes. Vegetation 126, 5–26 (1996). https://doi.org/10.1007/BF00047758

Zimmer K, Meyer C, Gebauer G (2008) The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytol 178:395–400. https://doi.org/10.1111/j.1469-8137.2007.02362.x