Get in We’re Going to The Great Basin!

I cannot believe it is already my last week of this internship. Pack up and come along for the ride through all the Great Basin explorations of our summer!

The rest of the season can be broken up into 3 main stages:

Scouting for Sphaeralcea (Globemallow)

Collecting Globemallow seeds

Scouting for Eriogonum umbellatum (ERUM). 

Scouting for Globemallow 

Unlike LODI earlier this season, when scouting for globemallow we aren’t looking for just one species but rather any in the genus. This has made it interesting to see all the different species of globemallow. Trips to find this plant lead us much farther into the Great Basin and into very different habitats than LODI. We found that Globemallow liked to grow in quite disturbed places, often along roadsides or in old roadbeds. It also seemed to do better in the very hot, dry, and low elevation areas of the Great Basin with sandier soils. When on hills we noticed a pattern of Globemallow only growing in a narrow mid elevation band around the hillsides. In addition to the usual scouting process I outlined in my previous blog about LODI, for Globemallow, we have begun taking an herbarium specimen from each population. This means we dig up a plant or a few plants, while keeping most roots intact and attached and press it to be used for records and identification later. The goal is to have a pressed plant that takes up about two thirds of the page and is a clean presentation of the plant. To make a good herbarium we sometimes need to pluck off leaves and flowers to make it appear less cluttered. In order for the plant to press well we may also need to shave down the root so it can lay flat. In addition to the physical plant we add information about the habitat, soil type, surrounding species and exact coordinates from where the plant was taken. 

Collecting Seed

By early July some Globemallow populations were ready to collect. July become the month of the mad dash to get as much seed as possible before it all dispersed. 

When collecting, the goal is to get at least 2000 seeds from each population. This is why it is so important to find at least 200 plants when scouting a population. 2000 seed usually means collecting at least 400 seed heads depending on how much seed they each hold. Globemallow seeds are arranged in round seed heads that look like little “cheese wheels” when they begin to open, holding seeds in different slices. It’s important to keep in mind that we don’t want to deplete the population of all its seed. For this reason we only collect 25% of seeds in a population for that season. When estimating this 25% we include already dispersed seed heads or immature seed heads in the total count of seed for that season.

Mature seed heads( cheese wheels) ready to collect.

ERUM Scouting

By August most of the Globemallow seed has been dispersed and the plants are drying up. For the last few weeks of our internship we shifted to scouting for Eriogonum umbellatum (ERUM). the research station is in the early phases of incorporating ERUM. For this reason scouting looked a little different than LODI and Globemallow. For ERUm we did not need to find 200 plants. The minimum was just 10 plants in order to get all the leaf tissue needed. The goal for ERUM was also to get a larger amount of potential population locations to work with. Instead of getting just a few populations across a large region we wanted to scout regions much more thoroughly and get samples from the highest and lowest elevations in those areas. This type of scouting brought Sahalie and I a lot of fun variation in our last few weeks. Unlike working with globemallow in low disturbed places along roadsides, the ERUM populations we needed were often at high elevations. This meant that we sometimes got to have an epic hike up 10,000 ft mountains to get our samples.

My Great Basin bedroom

Since the start of the scouting season in April, Sahalie and I have camped 2-3 nights nearly every week for the past 4 months. Our “office” truly looks different everyday. We have traveled to Wyoming, Utah, Nevada, Idaho, Oregon, and Washington. Sometimes we even hit 3 different states in just one trip! This has led us to some incredible adventures in the most remote corners of the desert and on top of mountain meadows all over of The Great Basin. Here are just a few of my favorite views and campsites. 

Overlooking our campsite in the Thomas Mountain range in Utah
Wild horses in Nevada

What I’ve Learned

Throughout this season I learned many botany and field skills that I am excited to apply in my future career. Some of the most valuable skills and experiences being: 

  • Aerial imagery interpretation
  • How to navigate remote rough roads in 4×4 USFS trucks
  • Great basin Plant ID
  • Native seed collection
  • Herbarium specimen collection
  • Leaf Tissue collection
  • Botanical Keys
  • Population mapping
  • Habitat scouting for of our focal species and how climate, aspect, slope, surrounding species and soil type influence where the plant will occur
  • Seed collection cleaning
  • Dynamic decision making in the field
  • Independent field work and trip planning
  • Plant phenology surveys

What’s Next?

While this is a goodbye to my CLM internship it is not my goodbye to Boise! Getting so lucky with a great crew and group of friends in the city, I just couldn’t bring myself to leave yet. Sahalie and I have moved out of the trailer and into a house in town with another one of our coworkers. I’m so excited for this new chapter in Boise where I can settle in and spend some time outside of my tent and the forest service truck for now. I’m planning on spending this fall gaining some farm experience on local farms around Boise. This farm experience combined with my CLM experience will give me valuable skills to apply towards my next step in my career. I plan on moving into soil health research and conservation planning within food production systems.

I am so grateful for this incredible summer with all the places I’ve seen, people I’ve met, and new skills I have learned!

A photo of Anna (our new roommate), Sahalie and I from our backpacking trip in the Sawtooths this summer.

Endless Adventures working with the U.S. Fish and Wildlife Service in Klamath Falls, Oregon

The Conservation and Land Management internship with the U.S. Fish and Wildlife Service continues to offer great field experience gathering skills and abilities essential in working in the wildlife ecology and management field. As the fire season starts to kick off here in the basin, the field projects are somewhat dwindling, although the department has not completely moved to a full-time office work schedule quite yet. On the days that smoke decides to roll into the basin and influences the air quality, I have become much more appreciative of the days that we get to spend out in the field, as the number of field days currently seems to be numbered with response to the incoming fire season. This past month or so, the projects we have gotten the chance to do include electrofishing in Bull Trout (Salvelinus confluentus) critical habitat, Yellow Rail (Coturnicops noveboracensis) surveys/banding, Modoc sucker (Catostomus microps) surveys, the attempt to track hatchery tagged fish in Upper Klamath Lake through radio and acoustic telemetry methods via boat, and volunteering to help clean up parts of the Williamson River.

Klamath Falls, Oregon
Sawmill Hiking Trail

The task of electrofishing in Bull Trout critical habitat is essential to determine the abundance of Bull Trout in the area. Bull Trout are currently listed as a threatened species, meaning the population of the species is dwindling, resulting in the species having a high possibility of becoming endangered in the future throughout all or in a considerable portion of its home range. At the first site that we had electro-fished, along Dixon Creek, no Bull Trout were caught, although 20 Brook Trout (Salvelinus fontinalis) were recorded.

Brook Trout (Salvelinus fontinalis)

The second site that was electro-fished farther upstream along Dixon Creek consisted of removing any Brown Trout (Salmo trutta) from the creek. Over the course of two days of electro-fishing at the second site, numerous Brown Trout of various sizes were removed from the creek, in addition to one small Bull Trout being caught, which was released immediately back into the creek.

Bull Trout (Salvelinus confluentus)
Brown Trout (Salmo trutta)

The purpose of removing Brown Trout that inhabit Bull Trout critical habitat is due to Brown Trout being an invasive species. The term “invasive species” refers to a species that is not native to the area it inhabits. The threats of invasive species include competing with native species for resources such as food, water, and habitat, preying on native species, and carrying diseases and parasites that have the chance to spread to native species populations. These threats reduce biodiversity within an ecosystem, ultimately threatening native species populations, making it critical to remove any Brown Trout in areas that are considered Bull Trout critical habitat.   

A project we participated in working alongside the Sucker Science Coordinator within the Klamath Falls Fish and Wildlife Office involved doing mussel surveys within sections of the Sprague River.

Sprague River

The western ridged mussel (Gonidea angulata) is a type of freshwater mussel that has seen the range of its distribution decrease, although the species is known to still inhabit California, Oregon, Washington, Idaho, Nevada, and British Colombia.

Western Ridged Mussel (Gonidea angulata)

In 2020, the species had been petitioned to be listed as an endangered species. The purpose of the survey was to look for western ridged mussels within sections of the Sprague River using a magnifying glass-like tool that allowed us to see the riverbed while looking from the surface of the water. The areas that were surveyed were once known as sites that contained western ridged mussels years prior. Individuals walked upstream and downstream from a site location to try and locate western ridged mussels in the area using the magnifying glass-like tool surveying different areas of the riverbed.

Magnifying glass-like Tool

If western ridged mussels were found, the GPS coordinates of the site where a mussel was found were recorded. Additionally, the number of western ridged mussels found per site was recorded as well. Other species of mussels that were found within areas surveyed included Floaters (Genus Anodonta or Sinanodonta) and Western Pearlshell (Margaritifera falcata).

With it being my first experience doing mussel surveys, it definitely took a little bit of practice learning how to differentiate the mussels from one another while using the mussel identification field guide that was provided. It also helped that the Sucker Science Coordinator had us do a practice run of trying to identify mussels at a site prior to doing the surveys and data collection.

One of the projects the other intern and I got to assist with alongside a graduate student and refuge staff at the Klamath Marsh/Upper Klamath National Wildlife Refuge consisted of doing Yellow Rail surveys, in which the surveys took place at night when the birds were active.

Yellow Rail (Coturnicops noveboracensis)

The process consisted of going out in the marsh and playing an acoustic call of a Yellow Rail via a JBL speaker in different areas throughout the marsh to try and get a response from Yellow Rails within proximity of the acoustic call. Receiving a response from Yellow Rails in the area allowed us to pinpoint the general location of the rails. The response call of the rails was a distinctive song, in which the sound was like what tapping two stones together would sound like (i.e., “tick-tick, tick-tick-tick”), in which most of the time, they alternate between sets of two and three notes. If we received a response from a rail nearby, we pinpointed the general direction of the rail call and walked towards the sound of the call until we had estimated that the bird was a couple meters away. Once we got as close to the bird as possible without being right next to it, we stopped and downed some of the dense grass around us to try and call in the bird to capture it with a net. The purpose of getting as close as possible to the bird and then trying to call it in is due to them being an extremely secretive, tiny, chickenlike marsh bird, which poses a risk of them being easily stepped on or walked over unknowingly.

Yellow Rail Nest

If the bird feels pressured, there is also a potential of flushing the bird and it flying away before getting the chance to net it. We had a few close encounters with some rails, they seemed very close to where we were set up, although we couldn’t call any into our setup to get the chance of netting them. If we had been lucky enough to call in some birds and capture them with a net, some measurements that would’ve been gathered while using a dial caliper include measuring the tarsus length, beak length, wing length from carpal joint to wingtip, and secondary length from carpal joint to the tip of the outermost secondary feather. Overall, I appreciated the opportunity that the refuge staff provided the other intern and I to help out with the rail surveys, it was exciting getting to hear quite a few rails calling throughout the marsh while the surveys were being conducted.

The project that was the most enjoyable that we had the chance to do this past month involved conducting Modoc sucker surveys in Lakeview, Oregon.

Modoc Sucker (Catostomus microps)

It was a 2-week project that consisted of finding pools to survey and recording UTM coordinates for each site during the first week and then camping the following week in order to conduct night surveys looking for Modoc suckers at each site of interest. Modoc suckers were listed as an endangered species in 1985 and were recently removed from the Federal List of Endangered and Threatened Wildlife in 2016 due to populations recovering with the help of the protection provided by the Endangered Species Act while the species was listed as endangered. The surveys we conducted were critical in monitoring the status of the species to ensure the population is staying relatively stable. Roughly 40+ pools were surveyed in wilderness streams, in which flashlights and laser pointers were used to locate the suckers and to try and count the ones found to record into our datasheet.

One of the pools surveyed for Modoc Suckers

For each sucker that was found, the size of each was estimated (in mm) and recorded into the corresponding size/age group. With Speckled Dace (Rhinichthys osculus) inhabiting the same pools surveyed as the Modoc suckers and looking somewhat similar to Modoc suckers as well, a distinctive characteristic that helped differentiate the Modoc suckers from Speckled Dace was the presence of dark bands on the backside of the suckers. The bands on the larger suckers were much more distinct, making it easier to I.D. the larger suckers.

Visible bands present on Modoc Sucker

Other organisms that were seen during the surveys consisted of Speckled Dace, tree frogs, Redband Trout (Oncorhynchus mykiss gairdneri), garter snakes, Water Scorpions (Nepidae), and a couple dragonflies emerging from their nymph stage.

A pool of Speckled Dace (Rhinichthys osculus)
Tree Frog
Water Scorpion (Nepidae)
Dragonfly emerging from its nymph stage
Dragonfly emerging from its nymph stage

Overall, although some nights were very tiring due to the surveys being conducted from 7 pm – 3 am, being able to camp for a couple days and look for fish at night while stars filled the sky was very enjoyable. It was also very exciting getting the chance to see many different organisms that inhabit the same aquatic ecosystem as the suckers as well.

The other intern and I alongside the Fisheries Biologist

The last two projects the other intern and I have gotten the chance to participate in involved attempting to track tagged fish in Upper Klamath Lake through radio and acoustic telemetry methods via boat and volunteering to help with the Williamson River cleanup. The project on Upper Klamath Lake did not go as planned, as the telemetry equipment/PIT tag equipment malfunctioned in which we did not get the chance to track tagged fish. But the day was not wasted as we got to go around the lake a bit on the boat while seeing tons of suckers swimming in groups near the boat.

Upper Klamath Lake

With regards to the Williamson River cleanup, it is a volunteer event that occurs once a year and involves picking up trash, mostly along the banks of the river, via boat. While there was minimal trash to be picked up, it was great in helping ensure that there will be fewer hazards in the water that fish may encounter that could potentially cause them harm.

Williamson River

Over the past two and a half months working with the U.S. Fish and Wildlife Service, the various projects have kept the job interesting. Every day is another adventure gaining new skills and getting the chance to see different parts of southern Oregon. I am excited to see what the next couple of months have in store for us interns before our term ends, and I can’t wait to get back out into the field to conduct more field research.

Snipping Stems and Staring at Buds

This last month has been a month of office work, a month of underground buds, and a month of buds (friends).

We’ve mowed the prairie once again. We mow several of the plots at our sites to simulate cows’ grazing, but in order to know how much biomass has been removed from the plots we go in with scissors and manually cut the plants and sort by functional group. The plants are then dried and weighed. Mowing and snipping the grasslands is maybe the most ridiculous thing I’ve done. We’re going to go back in a few weeks to re-trim the grass, to see how much it has grown in the time after the mowing. Science is pretty silly sometimes.

The Rocky Mountain Research Station in Rapid City, South Dakota is kept at a chill temperature that nobody seems to have control over. This means that even when it’s 95 degrees out, I still have to bring a sweater to work when I’m in the office. I’ve been doing a lot of sorting and weighing of plants, plus mind-numbing data entry.

The process of weighing the dried plants involves shaking everything out of its paper bag onto a sheet of repurposed herbarium paper, placing the bag on the scale and zeroing it, finagling everything off of the herbarium paper back into the paper bag, then weighing and recording the mass. We’re about halfway through the job: there’s two sites, each which had about 50 plots clipped, and each plot has up to eight paper bags. These eight bags are categorized by their contents: annual forb, perennial forb, warm-season grass, cool-season grass, annual grass, standing dead, Bouteloua gracilis/Bouteloua dactyloides, and Pascopyrum smithii.

Jackie lighting the fire tables.

Besides snipping and weighing grass, my supervisor, Jackie, also does research involving underground buds, typically grass buds. She studies the bud bank and how plants regenerate from belowground buds throughout their life histories but also after events like fires. Some of this research is done out of Colorado State University, and in the middle of the team’s fire treatment a burn ban was put into effect in Fort Collins. They drove 6 hours to Rapid City to burn the samples and I got to be involved with the use of fire tables!

Fire is super interesting to me. Experiencing the near-annual smoke season in the Pacific Northwest, I’ve heard about how the bigger, hotter fires of today are the result of forest mismanagement and practicing fire suppression. It feels weird to be preached at by Smokey Bear that only I can prevent forest fires when fires have been present in forests since time immemorial. I’ve also known that prairies also rely on fires to “refresh” the vegetation but I’ve never considered how it all works. It makes sense: perhaps fireweed responds to fire so well because its rhizomes are just deep enough to not crisp up in a fire and the burning of neighboring plants opens up aboveground space for its buds to shoot up and bloom.

A bud of Bouteloua gracilis. The feathery, white structure is the prophyll. Underneath the prophyll is the bud.

Jackie took Myesa and me down to Colorado State University in Fort Collins to teach us how to dissect and count the underground buds of some of the native prairie plants. It was a lot of tearing grass apart under a microscope, trying to determine if the bud was, in fact, a bud or if it has become a juvenile tiller. As far as I understand, the distinction is that a bud is completely underneath the prophyll (a sort of casing that protects it) whereas tillers extend past the prophyll. Even after spending a whole afternoon peering through the microscope, I still struggle when distinguishing the roots from the buds. 

Outside of work, I’ve done lots of playing. There’s some pretty good hikes here, and a few weekends ago I got up at 3 am to get a sunrise hike in, despite a thunderstorm that lit up the lawn outside as I sipped my coffee. The weather cleared up just in time for my friends and I to hike up Little Devil’s Tower to see the sun come up over Rapid City. I’ve also had two buddies visit me: my partner, Bryce, from Tacoma and my best bud, Joe, from Chicago.

The Black Hills have been an excellent place for me to get into outdoor rock climbing and it was exciting to share that experience with some visitors. The Black Hills granite will tear your fingers apart and rip your skin open without you noticing, but it is also super grippy and relatively easy to climb. The local climbing community is pretty small and tight, and there’s a huge amount of climbing which attracts people from all over to climb in the Hills.

When Joe visited, we toured one of the numerous caves out here. We went to Jewel Cave, which is named for the calcite dogtooth spar found within. Jewel Cave is the third-longest cave in the world, which is pretty neat. Southeast of Jewel Cave is Wind Cave National Park, and while I haven’t been inside Wind Cave itself, I have gone through the park several times to see the bison and prairie dogs.

A few weeks ago I helped do some point intercept line transects at Wind Cave. Point intercept line transects involve placing a pole, the “plunker”, down along a transect tape at regular intervals and recording which species are touching the plunker and at what heights they are touching it. This was fun because point intercept involves less species analysis than taking aerial cover of 1 meter x 0.5 meter quadrats, which is what most of my summer’s prior data collection has been. Plus, most of the transects were through bare prairie dog towns so there wasn’t any data to record.

Soon enough, I’ll be back out on Buffalo Gap National Grassland, trimming the prairie by hand once again. 

The bison at Wind Cave National Park.

Scouting and Seed Collection!

Time is going by fast here in Boise! I feel so lucky to be working in this job learning new things every day, traveling around the Great Basin, and seeing cool plants.

In the last couple months, my co-intern Alaina and I have spent our time scouting for plant populations and collecting seed. We have mainly focused on Sphaeralcea (Globe Mallow) species, but we also spent some time scouting for Lomatium dissectum (LODI) early in the season. Scouting requires us to look closely at a landscape and pay attention to little details like aspect, changes in vegetation, and soil composition. For example, the first time we saw LODI, it was growing on steep rocky slopes next to the Deschutes River. We noticed that the plants were abundant on some slopes and absent on others. We drove along the river, recording when populations of LODI started and stopped. It became clear that the plants were showing a preference for west and north facing slopes. Just from observation, it is easy to see that vegetation patterns change from one side of a hill to another. Even though this pattern is present all throughout nature, I hadn’t really paid it a lot of attention it before this spring. In scouting, I started to see a whole new dimension to the landscapes around me.

Sphaeralcea
Lomatium dissectum

Scouting trips required a lot of planning. Sometimes our mentor Jessica provided us points on a map to visit to look for plants and on other occasions Alaina and I spent hours in the office poring over google earth imagery to find likely habitat for our target species. For LODI, we looked for steep north and west facing slopes. For Globe Mallow we looked for sandy soils and disturbed areas. We also used herbarium specimen records to find places where plants were likely present. We then planned trips into the field to visit as many locations as possible.

Alaina and I learned a lot during our scouting trips. On our first trip scouting without our mentor Jessica, we chose to visit a creek in a steep walled canyon in the Owyhee Front. We mapped a possible route to the location on small dirt roads. However, we had no idea what these roads would look like once we arrived. After an hour and a half drive out from Boise, we turned onto a small two track road snaking away through the sage brush. We were feeling confident at first, but as we rattled our way down a long and very rough road, we started to wonder if we could make it all the way to the site. We remained hopeful and made slow but steady progress toward the canyon until we rounded a corner and came face to face with a rusty barbwire fence across the road and a private property sign. We turned around and made our way back to the main road, a bit discouraged. After consulting our map, we found another road leading to our field site and found our way there behind schedule.

Upon our arrival, we were delighted to find that what had looked on our map like a small canyon was in fact a spectacular and deep rocky canyon with spires and sheets of rock stacked like pancakes. We had to take a moment to sit and take in the view. Soon, we refocused on our scouting efforts. We searched the sides of the canyon for LODI, looking for its distinctive yellow umbel flowers and bright green hue. Unfortunately, there was none to be seen.

The canyon

At first glance, our first day scouting seems like a failure. We didn’t choose the best road, and we didn’t find any LODI at our scouting site. However, we quickly learned that these challenges are part of the process. After this trip we learned to more carefully plan our route when traveling on small two track roads. We also learned that scouting is unpredictable, and you need to be flexible with your plans. On many occasions a promising site ends up not having the plants you are looking for, but this is ok since every unsuccessful site helps you better understand where to look next.

Other scouting trips have taken us to Hell’s Canyon, Steens Mountain, western Wyoming, Jackpot Nevada, and beyond. We have mapped many populations of plants and collected lots of herbarium specimens. We have camped and hiked all over the Great Basin while looking for plants. We have grown very familiar with Globe Mallow and have found plants in all kinds of places, from disturbed sagebrush to a beautiful rocky hilltop to a hillside overlooking a bright blue lake.

A few sites where we mapped Globe Mallow populations

In the last month, Globe Mallow seeds have started to mature, and we have been returning to sites we scouted earlier in the season to collect seed. We collect 25% of the seed in a plant population at each site. It has been interesting to return to the sites we mapped and see the plants at a new stage. These seeds will be used in a new common garden for research that will support restoration of landscapes across the Great Basin.

Mature Globe Mallow seeds (picture credit Jessica Irwin)

The Prairie is Full of Grass: Poaceae is Difficult Sometimes.

June began with a package from my mom containing my forgotten raingear, which I needed for a few chilly, wet days. A bit of drizzle isn’t anything new to me, but the storms sure are. Two times now I’ve gotten caught in a car while a storm above drops hail the size of grapes, which pounds so loudly on the metal roof that you have to shout to be heard. Once the hail subsides, one can be sure to find dimples on the car body and the offending hunks of hail slowly melting in the ditch, inert.

Our site by Badlands National Park. To the right of the truck is the cottonwood tree (Populus deltoides) that is the singular source of shade at this site.

While the storms aren’t going to go away, the rain is no longer cold and it’s quite hot now. A few weeks ago it reached 102 degrees. We lunched under the shade of a singular, shrimpy cottonwood tree and the breeze still felt like it was gusting from an oven.

A week of June was also spent in Bill, Wyoming. Bill is an unincorporated township of about 10 people. Myesa and I were there helping the seasonal crew with a sagebrush fire study on Thunder Basin National Grassland, where we helped record aerial cover and stem counts. The craziest weather experienced there was just the wind: on Tuesday, everybody toppled over at least once. My knees hurt from bracing myself against the wind all day.

My time in Wyoming got me thinking about how much of ecological science is carried on the backs of young people. Sure, there are all the scientists and professors who publish the papers and design the experiments, but behind nearly each research project is a crew of several seasonals blundering through tall grass while trying to preserve the structural integrity of the data sheets and not-quite-rugged-enough plant field guide. The crew I worked with in Wyoming consisted of undergrads and recent college graduates, most of whom seemed to fall into the job because of a general interest in ecology and a stronger interest in employment, but not necessarily plants.

One of the plots on Thunder Basin National Grassland in Wyoming. This grassland has much more sagebrush (Artemisia spp.) than Buffalo Gap National Grassland in South Dakota.

It seems like an almost obvious labor solution to hire only young people: our bodies aren’t broken yet and we don’t always know that it is wrong to cut your 30-minute lunch in half in order to get the job done, while earning $15/hour. It’s a shame that most scientific projects don’t receive the funding to thoroughly train seasonal workers who will have moved on by fall. I wonder about the robustness of some studies where plant identification is important. I have a couple years of experience with staring closely at plants and identifying them but if somebody has never really noted and wondered about the differences between, say, a maple leaf and an oak leaf… how many mistakes could they make, out here on the prairie, trying to determine the differences between these very similar grasses?

Don’t get me wrong, I love plants and I am thoroughly enjoying my internship but if I had to describe my ideal summer gig, I wouldn’t exactly be waxing poetic about the joys of straining my eyes and lower back to peer at grass ligules, determining if the plant at hand is Bouteloua dactyloides or Bouteloua gracilis and then counting each individual stem of grass. I can’t imagine doing this job without having a semblance of passion for the plants. Plant identification mistakes are too easy to make and can have a huge impact on the data.

There is a grass out here called Pascopyrum smithii, which is easily identified by its clasping purple auricles, strong venation, and sandpapery texture. However, there have been several instances while counting stems where I identify a grass and its auricles as P. smithii only to glance at the inflorescence and realize that I’m wrong, it’s Bouteloua curtipendula. 

But of course, even if you have years of experience there are times where it is not enough. There are an infinite amount of perspectives that one can know plants from: from ornamental varieties to houseplants to vegetable gardens to native plants from one specific ecoregion, from agriculture to ethnobotany to taxonomy to functional traits to forest management to herbicide application.

A few summers ago I worked a plant survey job throughout Washington and Oregon when my partner and I came across a wondrously tall plant in town with large purple inflorescences.

“What could this beauty be?” we exclaimed in awe. “It’s so mighty and large! It looks sort of like a lilac, but it’s not the right time of year for lilacs to be blooming.”

We left the behemoth behind, un-keyed because it was not at a target site. Two years later, as I found myself cutting down and digging out and injecting poisons into invasive plants, I learned about Buddleja davidii. It’s also called butterfly bush, and it’s a beautiful ornamental plant from Asia, a plant people put in their gardens because it’s pretty and “feeds butterflies”. A plant that can produce up to 40,000 seeds per inflorescence and is very capable of pushing native plants out of their habitat.

The more I learn and do, the more I find myself feeling as if there is too much to know. The plant world is overwhelming and never ending, and perhaps no amount of training can ensure 100% accuracy, but at least I can rest assured that I will never cease to have the opportunity to learn more. At least Poaceae is less intimidating of a family than it was two months ago.

Escobaria vivipara
(spinystar)

Aphyllon fasciculatum
(clustered broomrape) parasitizing the Artemisia frigida (fringed sagebrush) in the background
Lewisia redviva
(bitterroot)

One Month Down in the Klamath Basin

Almost a month has gone by since I drove north through California to my internship with the US Fish & Wildlife Service in Klamath Falls, Oregon. Klamath Falls is the largest city in the Upper Klamath Basin, an area inhabited by the Klamath tribes since time immemorial. Before coming I did some virtual exploring via satellite imagery, which showed Klamath Falls in a transition zone where the dark green of forested land turns into the beige of a drier, desert landscape. Not surprisingly, my Google Maps tour did not prepare me for the incredible beauty and diversity that actually exists in the Basin. The high desert environment, with its sagebrush, western juniper and ponderosa pine, meets with vibrant riparian and wetland vegetation in the Basin’s river systems and marshes. The Upper Klamath Basin comprises several other drainage basins, some of which feed into Upper Klamath Lake. This lake feeds into the Klamath River, which flows through Northern California and into the Pacific Ocean. To the south you can see majestic Mount Shasta rising through the clouds, west are vast wilderness areas in the Cascades and the pointed peak of Mount McLoughlin, north and east exist several river systems, the Klamath Marsh Wildlife Refuge, and Crater Lake, a landmark of volcanic activity in the region. Basically, a short drive in any direction from Klamath Falls is both unique and stunning.

A view of Klamath Falls with Mount Shasta in the distance.
Klamath Falls, with a view of the south end of Upper Klamath Lake.

My fellow intern, Antonio, and I are here to assist on various projects within the Klamath Falls FWS office. My first week we joined the Fish & Wildlife Partners Program, a department that works with non-federal landowners to restore the habitats on their land. We did some wetland surveying, transplanted wocus (a native water lily used by the Klamath tribes) into a restoration site, and shadowed on a landowner outreach excursion. 

Our second week was spent with a hatchery rearing the endangered Lost River and shortnose suckers: endemic sucker species that are not seeing new recruitment in their populations. We spent every morning in a boat, collecting thousands of sucker larvae on the edges of the Williamson River. The afternoons were spent at the hatchery counting the nearly translucent baby fish one by one. Overall we collected and counted over 10,000 larvae. These larvae hang out in large tubs and are fed artemia (miniscule brine shrimp) until they grow larger and can be transferred to in-ground ponds. 

Uprooted wocus on their way to being transplanted
in a restored wetland.
Sucker larvae swimming in the collection cooler.

The next two weeks consisted of bull trout recovery work with our supervisor, Zach. Many streams that were historically occupied by genetically unique bull trout are now devoid of them, so there is a large effort to re-populate some of these areas and remove invasive brook trout. We worked our way up Long Creek, a branching of the Sycan River area, which previous studies had claimed were still occupied by bull trout. To sample the fish we use backpack electrofishing. One person will don the electrofishing backpack, and two others wield the dip nets. The electrofisher delivers a current that elicits involuntary muscle movements in any fish caught in the electric field. The fish moves towards the anode and is briefly immobilized to make for easier capture. The first fish we sampled were all invasive brook trout. We took down measurements and put a PIT tag under the dorsal fin. I’m somewhat ashamed to say that this was my first time holding a fish that wasn’t frozen salmon from the grocery store. What’s more, I did not expect these trout to be some of the most beautiful organisms I’ve ever seen.

 The long awaited bull trout were finally caught after we moved upstream to a steeper, rockier section of the creek. To continue our sampling in deeper parts of the creek, we put on “dry” suits and snorkeled upstream. No bull trout were identified in our snorkel search, but we did spend a solid five minutes observing two lamprey building a nest (also called a “redd”) about a foot from our faces. We also discovered that staying completely dry in a dry suit is not a given. All things considered, it was an amazing experience.

Zach and Antonio weighing a brook trout.
Antonio and I snorkeling up Long Creek in search of bull trout.
A lamprey caught during a fish survey in the Klamath Marsh NWR.

This month has been truly eye-opening for me. Not only am I learning new skills and becoming acquainted with the unique wildlife of this incredible region, but I am being exposed to a whole new field of work. The passion that exudes from the FWS staff, their knowledge of the native species here and their insatiable desire to keep learning is so inspiring to me. I can’t wait to see what the season has in store for Antonio and I. 

Lake of the Woods in the Fremont-Winema National Forest.

First Month Working with the US Fish and Wildlife Service in Klamath Falls, Oregon

The Conservation and Land Management internship has been beneficial in gaining experience working with various aspects of fisheries and wildlife conservation and management in conjunction with the Klamath Falls Fish and Wildlife Office. The opportunity to work alongside biologists and hatchery staff has led to gaining knowledge and experience working with species that are important to the local ecosystems in the area, whether it be Bull Trout, Brook Trout, Lost River sucker, shortnose sucker, and Canada Geese.


The first project consisted of using an electrofishing backpack to shock an area of Deming Creek Trail for Bull Trout. The purpose of electrofishing is to collect data regarding the abundance, species composition, health, and density of a fish population in any given area. The task involved using a backpacking unit in the stream to shock fish, catch the shocked fish in nets, and estimate the size lengths of each individual caught. With it being my first experience trying to net fish after they had been electroshocked by the backpack shocker, developing a quick reaction time to net the stunned fish was a must. As the day went on, we had better success rates in netting fish, which led to more accurate data for the study area.

Rosy Boa
Deming Creek


The second occasion of backpack electroshocking consisted of shocking wilderness streams for Brook Trout. With it being my first time getting to use an electrofishing backpack, it was definitely a learning experience. Looking for pools of calm water in the stream, whether it be along the banks of the stream or areas that are directly below large objects, such as boulders, were prime spots that typically held fish. Being able to recognize where the fish might be located helped the success rate of capture and, ultimately, data collection. The downside of using the electroshocking backpack for the first time was learning how to maneuver through a fast-flowing stream carrying the backpack while maintaining balance at the same time. When electrofishing, once shocked fish were caught, gaining experience using a PIT Tag reader, along with processing fish via PIT Tagging, weighing, and measuring the total length of each fish was beneficial for a future career in the fisheries field.

Brook Trout


A project that the intern program was able to assist in conjunction with Klamath Fish Hatchery consisted of working with the shortnose sucker and Lost River sucker. The task involved operating a skiff boat on the Williamson River and catching fish larvae with dip nets and storing them in coolers. Being out on the water, we were able to obtain experience driving the boat down the Williamson River, as well as loading the boat onto the trailer at the end of the day. Being able to obtain boating experience was awesome, as knowing how to operate and load a boat is highly sought after in the fisheries and wildlife field. Once returned to the hatchery with coolers filled with fish larvae, the larvae were individually counted and put into rearing tanks. Although counting each individual fish for a couple hours per day was draining, it was exciting knowing that our work is helping with the conservation of each species, as the two species of suckers are currently endangered.

Shortnose sucker and Lost River sucker larvae


One of the more adventurous projects consisted of going out snorkeling to look for Bull Trout. Coming from the desert in New Mexico where it is very dry, I have never gotten the chance to go snorkeling. Although the water was super cold and we didn’t catch a glimpse of any Bull Trout, being able to see schools of Speckled Dace in the water swimming around was awesome. The benefit of snorkeling was it helped sharpen our fish ID skills while we were identifying fish species in aquatic habitats.


One of the last projects we have completed recently involved banding geese in conjunction with a local wildlife refuge. Banding is a useful tool to gather data on breeding and wintering distribution, behavior, reproduction, survival, and migratory routes of migratory birds. The task involved using kayaks to direct flocks of geese that were on the water toward the shoreline where a fenced pen was set up. It took a lot of patience trying to keep the flock together as much as possible while also trying to push the flock towards the shore. Once the geese were on the shore and enclosed within the holding pen, it got hectic really quick. The process consisted of picking up each individual goose from the pen, determining the sex and age (i.e., hatch-year, mature), banding the goose, and returning it to the water. Over the last couple of days of geese banding, the process has gone a lot smoother as I have gotten more experience banding the birds.

Canada Geese


In conclusion, the conservation and land management internship has been really enjoyable, along with being beneficial in getting to experience helping with numerous fisheries and wildlife projects that the Klamath Falls Fish and Wildlife Office conducts on a daily basis. Although a job within the fisheries and wildlife field can be stressful at times, especially if one is moving from seasonal job to seasonal job with no luck on permanent employment, the projects that are conducted within a job can be very rewarding at times, in which I would recommend this type of fieldwork to any individual searching for a career path.

Wide Open Spaces: the grasslands of South Dakota

    After arriving in Rapid City, South Dakota, I promptly tested positive for COVID. This meant I spent the first two weeks quarantining alone and working from home. Home here is a little house in the hills surrounded by ponderosa pines, white-tailed deer, and the occasional turkey. But this last week I was finally able to go into the office and out into the field. And what a field it is!

Three white-tailed deer in a lawn surrounded by ponderosa pines look towards the camera.
These white-tailed deer that graze the lawn were some of my only company as I quarantined. Unfortunately, they’d bolt at any sudden noise or movement.

    Coming from the thickly forested west side of Washington state, the wide open spaces of the Midwest are something to get used to. There’s seemingly just grass for miles, with maybe a scrappy-looking cottonwood or two sprinkled in every now and then, almost as an afterthought. It makes me feel prone and nearly agoraphobic, causing me to empathize with rabbits and other critters that get spotted and scooped away by birds of prey.

    My first day out in the expansive fields of Buffalo Gap National Grassland was spent working on our plot for BromeCast. Bromus tectorum, also known as downy brome or cheatgrass, is an invasive species that outcompetes the native grasses on rangelands. Oftentimes the cows will graze the grass down, but if it is missed, B. tectorum dries out and becomes fuel for wildfires. The BromeCast project aims to predict the invasion of B. tectorum in order to better control the spread.

Our BromeCast site. B. tectorum seeds have been planted along the transect tape.
Myesa looking for the planted B. tectorum along the transect.

    In the fall, my mentor, Jacqueline Ott, planted B. tectorum seeds attached to toothpicks (for locating the plants later) along transects with bare and control conditions. Our job now is to record the amount of seeds that successfully germinated and were still alive and the surrounding plant composition. Unfortunately, the number of survivors was very low– we hypothesized that this could be because the toothpicks planted the cheatgrass seeds deeper than normal. It is an interesting feeling to be frustrated by an invasive species’ apparent lack of fecundity.

   Although the vastness of the grasslands is new to me, a lot of the plants are familiar. The ponderosa pine forest system exists in eastern Washington and I was surprised that pinedrops (Pterospora andromedea), which is a flower I got tattooed with some other people in memory of an excellent field summer in Washington, is actually much more common out in South Dakota than there!

    My coworker, Myesa, is also the type of person who stops at every new flower and can take an hour to hike half a mile. We went on a little day trip to Wyoming to check out Devil’s Tower and saw lots of neat plants.

Balsamhoriza sagittata,
Arrowleaf balsamroot

Castilleja sessiflora,
Downy paintbrush
Escobaria missouriensis,
Missouri Foxtail Cactus
Viola pedatifida,
Prairie violet

    Coming to a fresh ecoregion is exciting because it tests my plant identification skills: some plants I recognize as old friends, like Balsamhoriza sagittata; others I can identify the genus but the species itself is a stranger, as was the case with Castilleja sessiflora. And even further up the taxonomic tree, I am encountering families that are new to me: unpictured, but Myesa showed me some vegetative Apocynum androsaemifolium of Apocynaceae.

    I’ve only been out and about for one week now and I’ve already seen so many new things. I’m excited for the summer and what it holds.

The inimitable Devil’s Tower, also called Bear Lodge.

On The Lookout for LODI

Hey blog! Since my last entry Sahalie and I have been all over Washington, Oregon, and Idaho. The scouting season has begun! Our target species to scout for at the moment are Sphaeralcea (Globemallow) and Lomatium dissectum (Fernleaf Biscuitroot/LODI). We quickly learned it was too early for the Globemallow to be flowering, making them quite difficult to scout for without their bright orange inflorescence. The last few weeks we have focused on looking for LODI populations to collect seed from later on. 

The scouting process

The scouting process begins long before we hit the road. We usually spend a day examining topographic maps, and satellite imagery for the regions we want to visit, along with a thorough search of herbarium databases to see specific locations LODI has been found in the past. All of these resources help us narrow down a few places we think we will be most likely to find LODI. For this species we are looking on the maps for steep eroding rocky canyons with north and west facing slopes. However throughout the last few weeks we’ve learned quite a bit more about LODI’s habitat preference that doesn’t always follow this pattern! It seems that LODI likes to have an adjacent hill or wall to shade the slope they are growing on. We have also found it thriving on south facing slopes and in little gullies coming off of mountain drainages. After finding LODI on the steepest eroding slopes it was surprising to find it in the much more subtle topography changes of these shallow gullies filled with tumbleweeds. 

On the ground

Once we arrive at the places we’ve circled on the maps, the real scouting begins. Sometimes we get lucky and find a huge population instantly, you can even spot it from the road. Other times we will spend the entire day barely scraping up a population of 200 plants. 200 plants is the minimum number of plants we need in a population in order to collect seed from it. Over the last few weeks we have found populations that range from thousands of plants, hundreds of plants to just over 200. Once we have established that our population has enough plants we will begin to map it. This entails walking through the population dropping waypoints approximately every 30 meters and giving an estimate for about how many plants surround each waypoint. By the end of this process we will have a point cloud of the population that gives us a sense of both the boundaries and how many individuals it contains. This information is super helpful for whoever has to find the plants again to collect seed in the future. As we map we also collect leaf tissue samples. For each population we will select 12 plants to collect tissue from, scattered evenly throughout the area. Finally, we will take photos for each population. Each photoset includes the plant’s inflorescence, leaves, stems, base, involucres, the whole plant, the plant in its habitat, and a landscape photo of the habitat from outside of the population.

This months best “office” views

Hells canyon

Lomatium dissectum overlooking Hells canyon
Our dreamy campsite
Self timer action shot mapping the LODI population.

Steens Mountain trip

Got stopped by a cattle run on the way in, feeling like the real wild west!
Our morning view of Steens from the Alvord desert where we stayed the night at some hot springs!
Globemallow spotted while looking for LODI! Unfortunately not a big enough population.
Scouting site north of Steens. Ended up finding lots of LODI in the small drainages coming off of these slopes.

I have absolutely loved this month of scouting. It’s such a good feeling to pick out a little point on the map of somewhere you’ve never been, and then to go there, see the landscape in person, and find exactly the plant you’re looking for! It has taken us to some absolutely magical and remote places and I cannot wait to see more of the Great Basin as the season continues!

Our crew has grown a lot this last month with several new Forest Service technicians joining the team. We have all become such good friends! Outside of work we have been climbing, camping, and having beach days by Lucky Peak reservoir. I’m feeling so lucky to have such a good crew and group of friends to adventure with out here! Here are few more pictures of what we have been up to.

Sahalie, Nyika, and Katie climbing at the Black Cliffs

Abby, Sahalie, and I at the top of our Lightning ridge hike
Sunset hike to the top of the hill next to our trailer

Saying goodbye to Nevada and the Joshua Trees!

Though it’s already been a week, it’s very hard to believe that our internship in Boulder City is over! It’s been (a little under) 6 amazing months in Nevada – I’ve learned so much through this project, visited so many different National Parks, hiked many miles, camped more nights than I can count, and made a great friend. It’s been a busy last few months, and an even busier last couple of weeks as we wrapped up, but I wanted to post a few memories that have stuck out to me since the last time I posted.

Working on a physiology project of older Joshua trees. This was a cool project because we were collecting data for an initial hypothesis, and hopefully a full research project will come from their findings!
Starting the periderm stripping project, and getting to use gear from one of Lesley and Todd’s friends! We dedicated a couple weeks to this project, and it was so cool to travel to different places in Nevada and document the periderm stripping on these trees.
Writing and sending a letter to the aliens – it is so funny that there is a mailbox for aliens on a pretty random, deserted road!

I also wanted to say thank you to our mentors at USGS – Lesley, Todd, and Sara – and to Chris. I have learned so much about Joshua trees, climate change, and scientific research, and have felt very lucky to learn from them and have their support. They’ve provided invaluable advice in terms of future careers and schooling, and have been so encouraging and appreciative of our work with them. I will definitely miss working with them!

And another thank you to my co-intern, Maddy. We just wrapped up a celebratory end-of-internship road-trip to California to visit Sequoia, Kings Canyon, and Yosemite National Parks, and it was a beautiful way to round out our internship. Can’t wait to visit you in Idaho!

Heather Lake in Sequoia
Maddy and I at Mist Falls in Kings Canyon
A view from Glacier Point in Yosemite